Projectively equivalent metrics on the torus

被引:10
|
作者
Matveev, VS [1 ]
机构
[1] Univ Freiburg, Math Inst, D-79104 Freiburg, Germany
基金
英国工程与自然科学研究理事会;
关键词
projectively equivalent metrics; geodesically equivalent metrics; integrable systems; Levi-Civita coordinates; quantum integrability; separation of variables;
D O I
10.1016/j.difgeo.2003.10.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Riemannian metrics g and (g) over bar on a closed connected manifold M-n have the same geodesics, and suppose the eigenvalues of one metric with respect to the other are different at least at one point. We show that then the first Betti number b(1) (M-n) is not greater than n, and that if there exists a point where the eigenvalues of one metric with respect to the other are not all different, then the first Betti number b(1) (M-n) is less than n. In particular, if M-n is covered by the torus T-n, then the eigenvalues of one metric with respect to the other are different at every point. This allows us to classify such metrics on the torus and to separate variables in the equation on the eigenvalues of the Laplacian of g. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:251 / 265
页数:15
相关论文
共 50 条
  • [21] On Homogeneous Projectively Flat Finsler Metrics
    Tayebi, A.
    Najafi, B.
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (10)
  • [22] On some special projectively flat (α,β)-metrics
    Li, Benling
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2007, 71 (3-4): : 295 - 304
  • [23] On some projectively flat polynomial (α,β)-metrics
    Zhao Li-li
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2007, 8 (06): : 957 - 962
  • [24] On a class of projectively flat (α, β)-Finsler metrics
    Binh, Tran Quoc
    Cheng, Xinyue
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2008, 73 (3-4): : 391 - 400
  • [26] A Class of Projectively Flat Finsler Metrics
    Weidong SONG
    Jingyong ZHU
    JournalofMathematicalResearchwithApplications, 2013, 33 (06) : 737 - 744
  • [27] On some projectively flat polynomial (α,β)-metrics
    Li-li Zhao
    Journal of Zhejiang University-SCIENCE A, 2007, 8 : 957 - 962
  • [28] A Class of Projectively Flat Finsler Metrics
    Liu, Huaifu
    Mo, Xiaohuan
    Zhu, Ling
    RESULTS IN MATHEMATICS, 2024, 79 (06)
  • [29] Projectively equivalent ideals and Rees valuations
    Ciuperca, C
    Heinzer, WJ
    Ratliff, LJ
    Rush, DE
    JOURNAL OF ALGEBRA, 2004, 282 (01) : 140 - 156
  • [30] On cylindrical symmetric projectively flat Finsler metrics
    Solorzano, Newton
    Leon, Victor
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 186