Uncertainty modeling of Burgers' equation by generalized polynomial chaos

被引:0
|
作者
Xiu, Dongbin [1 ]
Karniadakis, George Em [1 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
来源
COMPUTATIONAL STOCHASTIC MECHANICS | 2003年
关键词
polynomial chaos; random boundary conditions; random viscosity; Burgers' equation;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The solution of viscous Burgers' equation subjected to stochastic inputs is investigated numerically. The source of uncertain inputs includes viscosity and boundary conditions. The generalized polynomial chaos expansion is employed to represent the solution in random space. The expected spectral convergence rate of the generalized polynomial chaos expansion is observed for model problem. When small random perturbation is imposed on the boundary condition, the location of the transition layer exhibit noticeable change. This phenomenon is investigated, and is in analogy to the so-called 'supersensitivity' which occurs under deterministic perturbation on the boundary condition.
引用
收藏
页码:655 / 661
页数:7
相关论文
共 50 条
  • [41] Asymptotic behaviour of a generalized Burgers' equation
    Reyes, G
    Vazquez, JL
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1999, 78 (06): : 633 - 666
  • [42] GENERALIZED POLYNOMIAL CHAOS EXPANSIONS WITH WEIGHTS
    Obermaier, Josef
    Stavropoulou, Faidra
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (01) : 30 - 45
  • [43] Performance evaluation of generalized polynomial chaos
    Xiu, DB
    Lucor, D
    Su, CH
    Karniadakis, GE
    COMPUTATIONAL SCIENCE - ICCS 2003, PT IV, PROCEEDINGS, 2003, 2660 : 346 - 354
  • [45] GENERALIZED SOLUTIONS TO BURGERS-EQUATION
    BIAGIONI, HA
    OBERGUGGENBERGER, M
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 97 (02) : 263 - 287
  • [46] Generalized polynomial chaos and random oscillators
    Lucor, D
    Su, CH
    Karniadakis, GE
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 60 (03) : 571 - 596
  • [47] ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS
    Ernst, Oliver G.
    Mugler, Antje
    Starkloff, Hans-Joerg
    Ullmann, Elisabeth
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2012, 46 (02) : 317 - 339
  • [48] Dynamic Transitions of Generalized Burgers Equation
    Limei Li
    Kiah Wah Ong
    Journal of Mathematical Fluid Mechanics, 2016, 18 : 89 - 102
  • [49] Generalized solutions in PDEs and the Burgers' equation
    Benci, Vieri
    Luperi Baglini, Lorenzo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (10) : 6916 - 6952
  • [50] Dynamic Transitions of Generalized Burgers Equation
    Li, Limei
    Ong, Kiah Wah
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2016, 18 (01) : 89 - 102