Uncertainty modeling of Burgers' equation by generalized polynomial chaos

被引:0
|
作者
Xiu, Dongbin [1 ]
Karniadakis, George Em [1 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
来源
COMPUTATIONAL STOCHASTIC MECHANICS | 2003年
关键词
polynomial chaos; random boundary conditions; random viscosity; Burgers' equation;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The solution of viscous Burgers' equation subjected to stochastic inputs is investigated numerically. The source of uncertain inputs includes viscosity and boundary conditions. The generalized polynomial chaos expansion is employed to represent the solution in random space. The expected spectral convergence rate of the generalized polynomial chaos expansion is observed for model problem. When small random perturbation is imposed on the boundary condition, the location of the transition layer exhibit noticeable change. This phenomenon is investigated, and is in analogy to the so-called 'supersensitivity' which occurs under deterministic perturbation on the boundary condition.
引用
收藏
页码:655 / 661
页数:7
相关论文
共 50 条
  • [21] Generalized Polynomial Chaos Expansion for Fast and Accurate Uncertainty Quantification in Geomechanical Modelling
    Zoccarato, Claudia
    Gazzola, Laura
    Ferronato, Massimiliano
    Teatini, Pietro
    ALGORITHMS, 2020, 13 (07)
  • [22] Uncertainty analysis for cylindrical structure vibration according to generalized polynomial chaos method
    Chen, Luyun
    Yi, Hong
    JOURNAL OF VIBROENGINEERING, 2023, 25 (04) : 655 - 666
  • [23] Some recommendations for applying gPC (generalized polynomial chaos) to modeling: An analysis through the Airy random differential equation
    Chen-Charpentier, Benito M.
    Cortes, J. -C.
    Romero, J. -V.
    Rosello, M. -D.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4208 - 4218
  • [24] Uncertainty quantification in neutron transport with generalized polynomial chaos using the method of characteristics
    Ayres, D. A. F.
    Eaton, M. D.
    Hagues, A. W.
    Williams, M. M. R.
    ANNALS OF NUCLEAR ENERGY, 2012, 45 : 14 - 28
  • [25] Uncertainty quantification/propagation in nonlinear models Robust reduction - generalized polynomial chaos
    Chikhaoui, Khaoula
    Bouhaddi, Noureddine
    Kacem, Najib
    Guedri, Mohamed
    Soula, Mohamed
    ENGINEERING COMPUTATIONS, 2017, 34 (04) : 1082 - 1106
  • [26] Generalized polynomial chaos based uncertainty propagation analysis for spacecraft relative motion
    Zhang, Runde
    Cai, Weiwei
    Yang, Leping
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 1837 - 1841
  • [27] UNCERTAINTY QUANTIFICATION FOR MARS ATMOSPHERIC ENTRY USING MODIFIED GENERALIZED POLYNOMIAL CHAOS
    Jiang, Xiuqiang
    Li, Shuang
    Furfaro, Roberto
    ASTRODYNAMICS 2018, PTS I-IV, 2019, 167 : 1677 - 1696
  • [28] Uncertainty quantification of nonlinear distributed parameter systems using generalized polynomial chaos
    Janya-anurak, Chettapong
    Bernard, Thomas
    Beyerer, Juergen
    AT-AUTOMATISIERUNGSTECHNIK, 2019, 67 (04) : 283 - 303
  • [29] Uncertainty analysis during space station redocking via generalized polynomial chaos
    Chen R.
    Tang S.
    Sun G.
    1600, Chinese Institute of Electronics (39): : 2075 - 2080
  • [30] On Generalized Nonlinear Burgers' Equation
    Bokhari, Ashfaque H.
    Kara, A. H.
    Abdulwahab, M.
    Zaman, F. D.
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2010, 23 (03): : 281 - 289