A Machine Learning Model for Exploring Aberrant Functional Network Connectivity Transition in Schizophrenia

被引:0
|
作者
Sendi, Mohammad S. E. [1 ,2 ,3 ,5 ]
Zendehrouh, Elaheh [4 ]
Fu, Zening [4 ,5 ]
Mahmoudi, Babak [1 ,2 ,6 ]
Miller, Robyn L. [4 ,5 ]
Calhoun, Vince D. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[2] Emory Univ, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Dept Elect & Comp Engn, Atlanta, GA 30313 USA
[4] Georgia State Univ, Atlanta, GA 30302 USA
[5] Emory Univ, Triinst Ctr Translat Res Neuroimaging & Data Sci, Georgia State Univ, Georgia Inst Technol, Atlanta, GA 30303 USA
[6] Emory Univ, Dept Biomed Informat, Atlanta, GA 30332 USA
关键词
Schizophrenia; resting-state fMRI; dynamic functional network connectivity; machine learning; feature learning; SELECTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Schizophrenia (SZ) is a severe neuropsychiatric disorder with a hallmark of functional dysconnectivity between numerous brain regions. With an implicit assumption of stationary brain interactions during the scanning period, most of the resting-state functional magnetic resonance imaging (fMRI) studies are conducted on static functional network connectivity (sFNC). Dynamic functional network connectivity (dFNC) that explores temporal patterns of functional connectivity (FC) might provide additional information to its static counterpart. In this work, we first estimate latent features (called connectivity states) by applying k-means clustering on dFNC. Next, using the estimated latent features, we trained and tested a classifier, which can differentiate SZ from healthy control (HC) subjects with 71% accuracy. Using a feature selection method embedded in the classifier, we have highlighted the role of transition probabilities between states as potential biomarkers and identified the role of lightly modularized transient connectivity state in pulling healthy subjects out of both highly modularized and very disconnected states. This will offer some new understandings about the way the healthy brain shifts between the most and the least connected states of whole brain connectivity.
引用
收藏
页码:112 / 115
页数:4
相关论文
共 50 条
  • [41] Aberrant functional connectivity between the thalamus and visual cortex is related to attentional impairment in schizophrenia
    Yamamoto, Maeri
    Kushima, Itaru
    Suzuki, Ryohei
    Branko, Aleksic
    Kawano, Naoko
    Inada, Toshiya
    Iidaka, Tetsuya
    Ozaki, Norio
    PSYCHIATRY RESEARCH-NEUROIMAGING, 2018, 278 : 35 - 41
  • [42] ABERRANT FUNCTIONAL CONNECTIVITY OF RIGHT ANTERIOR INSULA DURING A WORKING MEMORY TASK IN SCHIZOPHRENIA
    Palaniyappan, Lena
    White, Thomas P.
    Liddle, Peter F.
    SCHIZOPHRENIA RESEARCH, 2012, 136 : S101 - S101
  • [43] Aberrant 'default mode' functional connectivity in schizophrenia (vol 164, pg 450, 2007)
    Garrity
    AMERICAN JOURNAL OF PSYCHIATRY, 2007, 164 (07): : 1123 - 1123
  • [44] Aberrant cortical sources and functional connectivity during facial and body language recognition in schizophrenia
    Umesh, S.
    Tikka, Sai Krishna
    Babu, Venkatesh G. M.
    Goyal, Nishant
    INDIAN JOURNAL OF PSYCHIATRY, 2017, 59 (06) : S152 - S152
  • [45] Dynamic Functional Network Connectivity in Schizophrenia and Autism Spectrum Disorder
    Rabany, Liron
    Brocke, Sophy
    Calhoun, Vince D.
    Pittman, Brian
    Corbera, Silvia
    Wexler, Bruce E.
    Bell, Morris D.
    Pelphrey, Kevin
    Pearlson, Godfrey D.
    Assaf, Michal
    BIOLOGICAL PSYCHIATRY, 2018, 83 (09) : S435 - S435
  • [46] Nicotine restores functional connectivity of the ventral attention network in schizophrenia
    Smucny, Jason
    Olincy, Ann
    Tregellas, Jason R.
    NEUROPHARMACOLOGY, 2016, 108 : 144 - 151
  • [47] Functional Network Connectivity Impairments and Core Cognitive Deficits in Schizophrenia
    Adhikari, Bhim
    Hong, L. Elliot
    Sampath, Hemalatha
    Chiappelli, Joshua
    Jahanshad, Neda
    Thompson, Paul M.
    Rowland, Laura M.
    Calhoun, Vince
    Du, Xiaoming
    Chen, Shuo
    Kochunov, Peter
    BIOLOGICAL PSYCHIATRY, 2019, 85 (10) : S118 - S119
  • [48] Functional network connectivity impairments and core cognitive deficits in schizophrenia
    Adhikari, Bhim M.
    Hong, L. Elliot
    Sampath, Hemalatha
    Chiappelli, Joshua
    Jahanshad, Neda
    Thompson, Paul M.
    Rowland, Laura M.
    Calhoun, Vince D.
    Du, Xiaoming
    Chen, Shuo
    Kochunov, Peter
    HUMAN BRAIN MAPPING, 2019, 40 (16) : 4593 - 4605
  • [49] Functional network connectivity in schizophrenia during semantic memory task
    Jagannathan, Kanchana
    Pearlson, Godfrey D.
    Calhoun, Vince D.
    Kraut, Michael A.
    Hart, John
    Assaf, Michal
    BIOLOGICAL PSYCHIATRY, 2008, 63 (07) : 54S - 54S
  • [50] Connectivity strength of the EEG functional network in schizophrenia and bipolar disorder
    Cea-Canas, Benjamin
    Gomez-Pilar, Javier
    Nunez, Pablo
    Rodriguez-Vazquez, Eva
    de Uribe, Nieves
    Diez, Alvaro
    Perez-Escudero, Adela
    Molina, Vicente
    PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2020, 98