A Machine Learning Model for Exploring Aberrant Functional Network Connectivity Transition in Schizophrenia

被引:0
|
作者
Sendi, Mohammad S. E. [1 ,2 ,3 ,5 ]
Zendehrouh, Elaheh [4 ]
Fu, Zening [4 ,5 ]
Mahmoudi, Babak [1 ,2 ,6 ]
Miller, Robyn L. [4 ,5 ]
Calhoun, Vince D. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[2] Emory Univ, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Dept Elect & Comp Engn, Atlanta, GA 30313 USA
[4] Georgia State Univ, Atlanta, GA 30302 USA
[5] Emory Univ, Triinst Ctr Translat Res Neuroimaging & Data Sci, Georgia State Univ, Georgia Inst Technol, Atlanta, GA 30303 USA
[6] Emory Univ, Dept Biomed Informat, Atlanta, GA 30332 USA
关键词
Schizophrenia; resting-state fMRI; dynamic functional network connectivity; machine learning; feature learning; SELECTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Schizophrenia (SZ) is a severe neuropsychiatric disorder with a hallmark of functional dysconnectivity between numerous brain regions. With an implicit assumption of stationary brain interactions during the scanning period, most of the resting-state functional magnetic resonance imaging (fMRI) studies are conducted on static functional network connectivity (sFNC). Dynamic functional network connectivity (dFNC) that explores temporal patterns of functional connectivity (FC) might provide additional information to its static counterpart. In this work, we first estimate latent features (called connectivity states) by applying k-means clustering on dFNC. Next, using the estimated latent features, we trained and tested a classifier, which can differentiate SZ from healthy control (HC) subjects with 71% accuracy. Using a feature selection method embedded in the classifier, we have highlighted the role of transition probabilities between states as potential biomarkers and identified the role of lightly modularized transient connectivity state in pulling healthy subjects out of both highly modularized and very disconnected states. This will offer some new understandings about the way the healthy brain shifts between the most and the least connected states of whole brain connectivity.
引用
收藏
页码:112 / 115
页数:4
相关论文
共 50 条
  • [11] Aberrant network connectivity during error processing in patients with schizophrenia
    Voegler, Rolf
    Becker, Michael P. I.
    Nitsch, Alexander
    Miltner, Wolfgang H. R.
    Straube, Thomas
    JOURNAL OF PSYCHIATRY & NEUROSCIENCE, 2016, 41 (02): : E3 - E12
  • [12] Aberrant modulations of static functional connectivity and dynamic functional network connectivity in chronic migraine
    Zou, Yan
    Tang, Weijun
    Qiao, Xiangyang
    Li, Ji
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2021, 11 (06) : 2253 - 2264
  • [13] Aberrant posterior cingulate connectivity classify first -episode schizophrenia from controls: A machine learning study
    Liang, Sugai
    Deng, Wei
    Li, Xiaojing
    Wang, Qiang
    Greenshaw, Andrew J.
    Guo, Wanjun
    Kong, Xiangzhen
    Li, Mingli
    Zhao, Liansheng
    Meng, Yajing
    Zhang, Chengcheng
    Yu, Hua
    Li, Xin-min
    Ma, Xiaohong
    Li, Tao
    SCHIZOPHRENIA RESEARCH, 2020, 220 : 187 - 193
  • [14] Aberrant intra-salience network dynamic functional connectivity impairs large-scale network interactions in schizophrenia
    Wang, Xiangpeng
    Zhang, Wenwen
    Sun, Yujing
    Hu, Min
    Chen, Antao
    NEUROPSYCHOLOGIA, 2016, 93 : 262 - 270
  • [15] Functional Network Connectivity in Older Patients with Schizophrenia
    Abbott, Chris
    Bustillo, Juan
    Calhoun, Vince
    AMERICAN JOURNAL OF GERIATRIC PSYCHIATRY, 2011, 19 (03): : S122 - S123
  • [16] Functional network connectivity in early -stage schizophrenia
    Hummer, Tom A.
    Yung, Matthew G.
    Goni, Joaquin
    Conroy, Susan K.
    Francis, Michael M.
    Mehdiyoun, Nicole F.
    Breier, Alan
    SCHIZOPHRENIA RESEARCH, 2020, 218 : 107 - 115
  • [17] Functional network connectivity alterations in schizophrenia and depression
    Wu, Xing-Jie
    Zeng, Ling -Li
    Shen, Hui
    Yuan, Lin
    Qin, Jian
    Zhang, Peng
    Hu, Dewen
    PSYCHIATRY RESEARCH-NEUROIMAGING, 2017, 263 : 113 - 120
  • [18] Functional Connectivity Biomarker Extraction for Schizophrenia Based on Energy Landscape Machine Learning Techniques
    Allen, Janerra D.
    Varanasi, Sravani
    Han, Fei
    Hong, L. Elliot
    Choa, Fow-Sen
    SENSORS, 2024, 24 (23)
  • [19] Aberrant interhemispheric structural and functional connectivity within whole brain in schizophrenia
    Wang, Pan
    Jiang, Yuan
    Biswal, Bharat B.
    SCHIZOPHRENIA RESEARCH, 2024, 264 : 336 - 344
  • [20] Altered Static and Dynamic Functional Network Connectivity and Combined Machine Learning in Stroke
    Liu, Hao
    Huang, Xin
    Yang, Yu-Xin
    Chen, Ri-Bo
    BRAIN TOPOGRAPHY, 2025, 38 (02)