A Machine Learning Model for Exploring Aberrant Functional Network Connectivity Transition in Schizophrenia

被引:0
|
作者
Sendi, Mohammad S. E. [1 ,2 ,3 ,5 ]
Zendehrouh, Elaheh [4 ]
Fu, Zening [4 ,5 ]
Mahmoudi, Babak [1 ,2 ,6 ]
Miller, Robyn L. [4 ,5 ]
Calhoun, Vince D. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[2] Emory Univ, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Dept Elect & Comp Engn, Atlanta, GA 30313 USA
[4] Georgia State Univ, Atlanta, GA 30302 USA
[5] Emory Univ, Triinst Ctr Translat Res Neuroimaging & Data Sci, Georgia State Univ, Georgia Inst Technol, Atlanta, GA 30303 USA
[6] Emory Univ, Dept Biomed Informat, Atlanta, GA 30332 USA
关键词
Schizophrenia; resting-state fMRI; dynamic functional network connectivity; machine learning; feature learning; SELECTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Schizophrenia (SZ) is a severe neuropsychiatric disorder with a hallmark of functional dysconnectivity between numerous brain regions. With an implicit assumption of stationary brain interactions during the scanning period, most of the resting-state functional magnetic resonance imaging (fMRI) studies are conducted on static functional network connectivity (sFNC). Dynamic functional network connectivity (dFNC) that explores temporal patterns of functional connectivity (FC) might provide additional information to its static counterpart. In this work, we first estimate latent features (called connectivity states) by applying k-means clustering on dFNC. Next, using the estimated latent features, we trained and tested a classifier, which can differentiate SZ from healthy control (HC) subjects with 71% accuracy. Using a feature selection method embedded in the classifier, we have highlighted the role of transition probabilities between states as potential biomarkers and identified the role of lightly modularized transient connectivity state in pulling healthy subjects out of both highly modularized and very disconnected states. This will offer some new understandings about the way the healthy brain shifts between the most and the least connected states of whole brain connectivity.
引用
收藏
页码:112 / 115
页数:4
相关论文
共 50 条
  • [1] Aberrant structural and functional connectivity in the salience network and central executive network circuit in schizophrenia
    Chen, Quan
    Chen, Xingui
    He, Xiaoxuan
    Wang, Lu
    Wang, Kai
    Qiu, Bensheng
    NEUROSCIENCE LETTERS, 2016, 627 : 178 - 184
  • [2] Aberrant Functional Network Connectivity Transition Probability in Major Depressive Disorder
    Zendehrouh, Elaheh
    Sendi, Mohammad. S. E.
    Sui, Jing
    Fu, Zening
    Zhi, Dongmei
    Lv, Luxian
    Ma, Xiaohong
    Ke, Qing
    Li, Xianbin
    Wang, Chuanyue
    Abbott, Christopher. C.
    Turner, Jessica A.
    Miller, Robyn. L.
    Calhoun, Vince D.
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1493 - 1496
  • [3] Aberrant "default mode" functional connectivity in schizophrenia
    Garrity, Abigail G.
    Pearlson, Godfrey D.
    McKiernan, Kristen
    Lloyd, Dan
    Kiehl, Kent A.
    Calhoun, Vince D.
    AMERICAN JOURNAL OF PSYCHIATRY, 2007, 164 (03): : 450 - 457
  • [4] Effect of tDCS on Aberrant Functional Network Connectivity in Refractory Hallucinatory Schizophrenia: A Pilot Study
    Yoon, Youngwoo Bryan
    Kim, Minah
    Lee, Junhee
    Cho, Kang Ik K.
    Kwak, Seoyeon
    Lee, Tae Young
    Kwon, Jun Soo
    PSYCHIATRY INVESTIGATION, 2019, 16 (03) : 244 - 248
  • [5] Aberrant Dynamic Functional Connectivity of Default Mode Network in Schizophrenia and Links to Symptom Severity
    Sendi, Mohammad S. E.
    Zendehrouh, Elaheh
    Ellis, Charles A.
    Liang, Zhijia
    Fu, Zening
    Mathalon, Daniel H.
    Ford, Judith M.
    Preda, Adrian
    van Erp, Theo G. M.
    Miller, Robyn L.
    Pearlson, Godfrey D.
    Turner, Jessica A.
    Calhoun, Vince D.
    FRONTIERS IN NEURAL CIRCUITS, 2021, 15
  • [6] Aberrant resting-state functional connectivity of salience network in first-episode schizophrenia
    Huang, Huan
    Botao, Zeng
    Jiang, Yuchao
    Tang, Yingying
    Zhang, Tianhong
    Tang, Xiaochen
    Xu, Lihua
    Wang, Junjie
    Li, Jin
    Qian, Zhenying
    Liu, Xu
    Wang, Huiling
    Luo, Cheng
    Li, Chunbo
    Xu, Jian
    Goff, Donald
    Wang, Jijun
    BRAIN IMAGING AND BEHAVIOR, 2020, 14 (05) : 1350 - 1360
  • [7] Aberrant resting-state functional connectivity of salience network in first-episode schizophrenia
    Huan Huang
    Zeng Botao
    Yuchao Jiang
    Yingying Tang
    Tianhong Zhang
    Xiaochen Tang
    Lihua Xu
    Junjie Wang
    Jin Li
    Zhenying Qian
    Xu Liu
    Huiling Wang
    Cheng Luo
    Chunbo Li
    Jian Xu
    Donald Goff
    Jijun Wang
    Brain Imaging and Behavior, 2020, 14 : 1350 - 1360
  • [8] A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity
    Shevchenko, Victoria
    Benn, R. Austin
    Scholz, Robert
    Wei, Wei
    Pallavicini, Carla
    Klatzmann, Ulysse
    Alberti, Francesco
    Satterthwaite, Theodore D.
    Wassermann, Demian
    Bazin, Pierre-Louis
    Margulies, Daniel S.
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [9] Aberrant Neural Connectivity Associated with Different Functional Networks in Schizophrenia
    Wang, Liang
    Metzak, Paul D.
    Whitman, Jennifer C.
    Woodward, Todd S.
    BIOLOGICAL PSYCHIATRY, 2009, 65 (08) : 190S - 190S
  • [10] Aberrant Default Mode Functional Connectivity in Early Onset Schizophrenia
    Tang, Jinsong
    Liao, Yanhui
    Song, Ming
    Gao, Jia-Hong
    Zhou, Bing
    Tan, Changlian
    Liu, Tieqiao
    Tang, Yanqing
    Chen, Jindong
    Chen, Xiaogang
    PLOS ONE, 2013, 8 (07):