Generalized Kadomtsev-Petviashvili equation with an infinite-dimensional symmetry algebra

被引:51
|
作者
Güngör, F [1 ]
Winternitz, P
机构
[1] Istanbul Tech Univ, Dept Math, Fac Sci & Letters, TR-80626 Istanbul, Turkey
[2] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/S0022-247X(02)00445-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generalized Kadomtsev-Petviashvili equation, describing water waves in oceans of varying depth, density and vorticity is discussed. A priori, it involves 9 arbitrary functions of one, or two variables. The conditions are determined under which the equation allows an infinite-dimensional symmetry algebra. This algebra can involve up to three arbitrary functions of time. It depends on precisely three such functions if and only if it is completely integrable. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:314 / 328
页数:15
相关论文
共 50 条
  • [41] On the nonisospectral Kadomtsev-Petviashvili equation
    Yu, GF
    Tam, HW
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (13): : 3367 - 3373
  • [42] UNIFIED KADOMTSEV-PETVIASHVILI EQUATION
    CHEN, XN
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1989, 1 (12): : 2058 - 2060
  • [43] ON THE INFINITE HIERARCHIES OF SYMMETRIES AND CONSTANTS OF MOTION FOR THE KADOMTSEV-PETVIASHVILI EQUATION
    CHEN, HH
    LIN, JE
    PHYSICA D-NONLINEAR PHENOMENA, 1987, 26 (1-3) : 171 - 180
  • [44] Symmetry analysis and invariant solutions of (3+1)-dimensional Kadomtsev-Petviashvili equation
    Jadaun, Vishakha
    Kumar, Sachin
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (08)
  • [45] Lie symmetry reductions and exact solutions of Kadomtsev-Petviashvili equation
    Anukriti, Dig Vijay
    Tanwar, Dig Vijay
    PRAMANA-JOURNAL OF PHYSICS, 2025, 99 (01):
  • [46] EQUATIONS INVARIANT UNDER THE SYMMETRY GROUP OF THE KADOMTSEV-PETVIASHVILI EQUATION
    DAVID, D
    LEVI, D
    WINTERNITZ, P
    PHYSICS LETTERS A, 1988, 129 (03) : 161 - 164
  • [47] Stationary Solutions for a Generalized Kadomtsev-Petviashvili Equation in Bounded Domain
    ZHANG KE-YU
    XU JIA-FA
    Li Yong
    CommunicationsinMathematicalResearch, 2014, 30 (03) : 273 - 283
  • [48] Solutions of the Generalized Rotation-Modified Kadomtsev-Petviashvili Equation
    Chen, Jianqing
    Liu, Yue
    ADVANCED NONLINEAR STUDIES, 2010, 10 (02) : 413 - 432
  • [49] On the integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation
    Tian, Shou-Fu
    Zhang, Hong-Qing
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (05)
  • [50] Dynamics of rational solutions in a new generalized Kadomtsev-Petviashvili equation
    Hosseini, K.
    Aligoli, M.
    Mirzazadeh, M.
    Eslami, M.
    Gomez-Aguilar, J. F.
    MODERN PHYSICS LETTERS B, 2019, 33 (35):