Generalized Kadomtsev-Petviashvili equation with an infinite-dimensional symmetry algebra

被引:51
|
作者
Güngör, F [1 ]
Winternitz, P
机构
[1] Istanbul Tech Univ, Dept Math, Fac Sci & Letters, TR-80626 Istanbul, Turkey
[2] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/S0022-247X(02)00445-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generalized Kadomtsev-Petviashvili equation, describing water waves in oceans of varying depth, density and vorticity is discussed. A priori, it involves 9 arbitrary functions of one, or two variables. The conditions are determined under which the equation allows an infinite-dimensional symmetry algebra. This algebra can involve up to three arbitrary functions of time. It depends on precisely three such functions if and only if it is completely integrable. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:314 / 328
页数:15
相关论文
共 50 条
  • [21] Lie Symmetry Group of the Nonisospectral Kadomtsev-Petviashvili Equation
    Chen, Yong
    Hu, Xiaorui
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2009, 64 (1-2): : 8 - 14
  • [22] CAUCHY-PROBLEM FOR THE GENERALIZED KADOMTSEV-PETVIASHVILI EQUATION
    FAMINSKII, AV
    SIBERIAN MATHEMATICAL JOURNAL, 1992, 33 (01) : 133 - 143
  • [23] Classification of exact solutions to the generalized Kadomtsev-Petviashvili equation
    Pandir, Yusuf
    Gurefe, Yusuf
    Misirli, Emine
    PHYSICA SCRIPTA, 2013, 87 (02)
  • [24] Some Exact Solutions to Generalized Kadomtsev-Petviashvili Equation
    Wang, Bao
    Chen, Zhiqiang
    ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
  • [25] Lump solutions of a new generalized Kadomtsev-Petviashvili equation
    Yu, Jing
    Ma, Wen-Xiu
    Chen, Shou-Ting
    MODERN PHYSICS LETTERS B, 2019, 33 (10):
  • [26] Transverse spectral instability in generalized Kadomtsev-Petviashvili equation
    Bhavna
    Kumar, Atul
    Pandey, Ashish Kumar
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2260):
  • [27] On the generalized Kadomtsev-Petviashvili equation with generalized evolution and variable coefficients
    Esfahani, Amin
    PHYSICS LETTERS A, 2010, 374 (35) : 3635 - 3645
  • [28] ON THE STRUCTURE OF TWO-DIMENSIONAL SOLITONS DESCRIBED BY A GENERALIZED KADOMTSEV-PETVIASHVILI EQUATION
    ABRAMYAN, LA
    STEPANYANTS, YA
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOFIZIKA, 1987, 30 (10): : 1175 - 1180
  • [29] Backlund Transformations and Solutions of a Generalized Kadomtsev-Petviashvili Equation
    Wang Yun-Hu
    Chen Yong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 57 (02) : 217 - 222
  • [30] EXISTENCE OF SOLITARY WAVES TO A GENERALIZED KADOMTSEV-PETVIASHVILI EQUATION
    梁占平
    苏加宝
    Acta Mathematica Scientia, 2012, 32 (03) : 1149 - 1156