Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements

被引:465
|
作者
Back, Seoin [1 ]
Lim, Juhyung [1 ]
Kim, Na-Young [2 ]
Kim, Yong-Hyun [2 ]
Jung, Yousung [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Grad Sch EEWS, 291 Daehakro, Daejeon 34141, South Korea
[2] Korea Adv Inst Sci & Technol, Grad Sch Nanosci & Technol, 291 Daehakro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; METAL; AU; HYDROCARBONS; PERFORMANCE; CONVERSION; IR-1/FEOX; OXIDATION; GRAPHENE;
D O I
10.1039/c6sc03911a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A single-atom catalyst (SAC) has an electronic structure that is very different from its bulk counterparts, and has shown an unexpectedly high specific activity with a significant reduction in noble metal usage for CO oxidation, fuel cell and hydrogen evolution applications, although physical origins of such performance enhancements are still poorly understood. Herein, by means of density functional theory (DFT) calculations, we for the first time investigate the great potential of single atom catalysts for CO2 electroreduction applications. In particular, we study a single transition metal atom anchored on defective graphene with single or double vacancies, denoted M@sv-Gr or M@dv-Gr, where M = Ag, Au, Co, Cu, Fe, Ir, Ni, Os, Pd, Pt, Rh or Ru, as a CO2 reduction catalyst. Many SACs are indeed shown to be highly selective for the CO2 reduction reaction over a competitive H-2 evolution reaction due to favorable adsorption of carboxyl (*COOH) or formate (*OCHO) over hydrogen (*H) on the catalysts. On the basis of free energy profiles, we identified several promising candidate materials for different products; Ni@dv-Gr (limiting potential U-L = -0.41 V) and Pt@dv-Gr (-0.27 V) for CH3OH production, and Os@dvGr (-0.52 V) and Ru@dv-Gr (-0.52 V) for CH4 production. In particular, the Pt@dv-Gr catalyst shows remarkable reduction in the limiting potential for CH3OH production compared to any existing catalysts, synthesized or predicted. To understand the origin of the activity enhancement of SACs, we find that the lack of an atomic ensemble for adsorbate binding and the unique electronic structure of the single atom catalysts as well as orbital interaction play an important role, contributing to binding energies of SACs that deviate considerably from the conventional scaling relation of bulk transition metals.
引用
收藏
页码:1090 / 1096
页数:7
相关论文
共 50 条
  • [41] Heterogeneous single-atom catalysts for efficient CO2 conversion
    Zhang, Tao
    Yang, Xiaofeng
    Liu, Bin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [42] Tuning the product selectivity of single-atom catalysts for CO2 reduction beyond CO formation by orbital engineering
    Mari, Vasanthapandiyan
    Karmodak, Naiwrit
    NANOSCALE, 2024, 16 (40) : 18859 - 18870
  • [43] Not One, Not Two, But at Least Three: Activity Origin of Copper Single-Atom Catalysts toward CO2/CO Electroreduction to C2+ Products
    Zhang, Juan
    Wang, Yu
    Li, Yafei
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (22) : 14954 - 14958
  • [44] CO2 electroreduction on single atom catalysts: the role of the DFT functional
    Misra, Debolina
    Di Liberto, Giovanni
    Pacchioni, Gianfranco
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (14) : 10746 - 10756
  • [45] CO2 electroreduction on single atom catalysts: Is water just a solvent?
    Misra, Debolina
    Di Liberto, Giovanni
    Pacchioni, Gianfranco
    JOURNAL OF CATALYSIS, 2023, 422 : 1 - 11
  • [46] Theoretical exploration on the activity of copper single-atom catalysts for electrocatalytic reduction of CO2
    Min, Junyong
    Liu, Lei
    Chen, Fengjuan
    Jin, Xuekun
    Yuan, Tianjiao
    Yao, Xiaoqian
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (14) : 7735 - 7745
  • [47] Homonuclear multi-atom catalysts for CO2 electroreduction: a comparison density functional theory study with their single-atom counterparts
    Xiao, Jingjing
    Liu, Ziyang
    Wang, Xinshuang
    Li, Fengyu
    Zhao, Zhonglong
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (46) : 25662 - 25670
  • [48] Low-Coordinated Single-Atom Catalysts Modulated by Metal Ionic Liquids for Efficient CO2 Electroreduction
    Yuan, Lei
    Zeng, Shaojuan
    Li, Guilin
    Wang, Yaofeng
    Peng, Kuilin
    Feng, Jiaqi
    Zhang, Xiangping
    Zhang, Suojiang
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (47)
  • [49] Transition Metal-Nitrogen-Carbon Single-Atom Catalysts Enhanced CO2 Electroreduction Reaction: A Review
    Ji, Youan
    Du, Juan
    Chen, Aibing
    Gao, Xueqing
    Peng, Mengke
    CHEMSUSCHEM, 2025, 18 (03)
  • [50] Single-Atom catalysts supported by nanographene networks for efficient CO2 electroreduction: A first-principles study
    Wang, Zhilong
    Abdelsalam, Hazem
    Teleb, Nahed H.
    Abd-Elkader, Omar H.
    Sakr, Mahmoud A. S.
    Liu, Yushen
    Zhang, Qinfang
    SURFACES AND INTERFACES, 2024, 55