Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements

被引:465
|
作者
Back, Seoin [1 ]
Lim, Juhyung [1 ]
Kim, Na-Young [2 ]
Kim, Yong-Hyun [2 ]
Jung, Yousung [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Grad Sch EEWS, 291 Daehakro, Daejeon 34141, South Korea
[2] Korea Adv Inst Sci & Technol, Grad Sch Nanosci & Technol, 291 Daehakro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; METAL; AU; HYDROCARBONS; PERFORMANCE; CONVERSION; IR-1/FEOX; OXIDATION; GRAPHENE;
D O I
10.1039/c6sc03911a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A single-atom catalyst (SAC) has an electronic structure that is very different from its bulk counterparts, and has shown an unexpectedly high specific activity with a significant reduction in noble metal usage for CO oxidation, fuel cell and hydrogen evolution applications, although physical origins of such performance enhancements are still poorly understood. Herein, by means of density functional theory (DFT) calculations, we for the first time investigate the great potential of single atom catalysts for CO2 electroreduction applications. In particular, we study a single transition metal atom anchored on defective graphene with single or double vacancies, denoted M@sv-Gr or M@dv-Gr, where M = Ag, Au, Co, Cu, Fe, Ir, Ni, Os, Pd, Pt, Rh or Ru, as a CO2 reduction catalyst. Many SACs are indeed shown to be highly selective for the CO2 reduction reaction over a competitive H-2 evolution reaction due to favorable adsorption of carboxyl (*COOH) or formate (*OCHO) over hydrogen (*H) on the catalysts. On the basis of free energy profiles, we identified several promising candidate materials for different products; Ni@dv-Gr (limiting potential U-L = -0.41 V) and Pt@dv-Gr (-0.27 V) for CH3OH production, and Os@dvGr (-0.52 V) and Ru@dv-Gr (-0.52 V) for CH4 production. In particular, the Pt@dv-Gr catalyst shows remarkable reduction in the limiting potential for CH3OH production compared to any existing catalysts, synthesized or predicted. To understand the origin of the activity enhancement of SACs, we find that the lack of an atomic ensemble for adsorbate binding and the unique electronic structure of the single atom catalysts as well as orbital interaction play an important role, contributing to binding energies of SACs that deviate considerably from the conventional scaling relation of bulk transition metals.
引用
收藏
页码:1090 / 1096
页数:7
相关论文
共 50 条
  • [31] Structure Sensitivity in Single-Atom Catalysis toward CO2 Electroreduction
    Gao, Dunfeng
    Liu, Tianfu
    Wang, Guoxiong
    Bao, Xinhe
    ACS ENERGY LETTERS, 2021, 6 (02) : 713 - 727
  • [32] Steering the Product Selectivity of CO2 Electroreduction by Single Atom Switching in Isostructural Copper Nanocluster Catalysts
    Han, Chao
    Yang, Tao
    Fang, Youqiong
    Du, Yuanxin
    Jin, Shan
    Xiong, Lin
    Zhu, Manzhou
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025,
  • [33] Design of single-atom catalysts on S-functionalized Mxenes for enhanced activity and selectivity in N2 electroreduction
    Huang, Bin
    Yang, Jing
    Ren, Guangyuan
    Qian, Yong
    Zhang, Yong-Wei
    APPLIED CATALYSIS A-GENERAL, 2022, 646
  • [34] Nanocluster and single-atom catalysts for thermocatalytic conversion of CO and CO2
    Doherty, Francis
    Wang, Hui
    Yang, Ming
    Goldsmith, Bryan R.
    CATALYSIS SCIENCE & TECHNOLOGY, 2020, 10 (17) : 5772 - 5791
  • [35] CO electroreduction on single-atom copper
    Wang, Yuxuan
    Li, Boyang
    Xue, Bin
    Libretto, Nicole
    Xie, Zhenhua
    Shen, Hao
    Wang, Canhui
    Raciti, David
    Marinkovic, Nebojsa
    Zong, Han
    Xie, Wenjun
    Li, Ziyuan
    Zhou, Guangye
    Vitek, Jeff
    Chen, Jingguang G.
    Miller, Jeffery
    Wang, Guofeng
    Wang, Chao
    SCIENCE ADVANCES, 2023, 9 (30)
  • [36] Recent Advances on Single-Atom Catalysts for CO2 Reduction
    Liu, Lizhen
    Li, Mingtao
    Chen, Fang
    Huang, Hongwei
    SMALL STRUCTURES, 2023, 4 (03):
  • [37] Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction
    Feng, Xueting
    Shang, Ziang
    Qin, Rong
    Han, Yunhu
    ACTA PHYSICO-CHIMICA SINICA, 2024, 40 (04)
  • [38] Electrocatalytic CO2 Reduction over Single-atom Catalysts
    Jin, Xiangyuan
    Zhang, Libing
    Sun, Xiaofu
    Han, Buxing
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2022, 43 (05):
  • [39] Recent advances of single-atom catalysts in CO2 conversion
    Wang, Shunwu
    Wang, Ligang
    Wang, Dingsheng
    Li, Yadong
    ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (07) : 2759 - 2803
  • [40] Mechanism insights on single-atom catalysts for CO2 conversion
    Wu, Qing
    Wu, Chongchong
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (10) : 4876 - 4906