Duality between matrix variate t and matrix variate VG distributions

被引:3
|
作者
Haffar, Solomon W. [1 ]
Seneta, Eugene
Gupta, Arjun K.
机构
[1] Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[3] S Dakota State Univ, Dept Math & Stat, Brookings, SD 57007 USA
关键词
characteristic function; inversion theorem; inverted Wishart; log return; matrix generalized inverse Gaussian; matrix variate distributions; Wishart; variance-gamma;
D O I
10.1016/j.jmva.2005.09.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The (univariate) t-distribution and symmetric VG. distribution are competing models [D.S. Madan, E. Seneta, The variance gamma (V.G.) model for share market returns, J. Business 63 (1990) 511-524; T.W. Epps, Pricing Derivative Securities, World Scientific, Singapore, 2000 (Section 9.4)] for the distribution of log-increments of the price of a financial asset. Both result from scale-mixing of the normal distribution. The analogous matrix variate distributions and their characteristic functions are derived in the sequel and are dual to each other in the sense of a simple Duality Theorem. This theorem can thus be used to yield the derivation of the characteristic function of the t-distribution and is the essence of the idea used by Dreier and Kotz [A note on the characteristic function of the t-distribution, Statist. Probab. Lett. 57 (2002) 221-224]. The present paper generalizes the univariate ideas in Section 6 of Seneta [Fitting the variance-gamma (VG) model to financial data, stochastic methods and their applications, Papers in Honour of Chris Heyde, Applied Probability Trust, Sheffield, J. Appl. Probab. (Special Volume) 41A (2004) 177-187] to the general matrix generalized inverse gaussian (MGIG) distribution. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:1467 / 1475
页数:9
相关论文
共 50 条
  • [41] Matrix variate slash distribution
    Bulut, Y. Murat
    Arslan, Olcay
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 137 : 173 - 178
  • [42] Matrix variate Macdonald distribution
    Nagar, Daya K.
    Roldan-Correa, Alejandro
    Gupta, Arjun K.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (05) : 1311 - 1328
  • [43] Wavelet Shrinkage Estimation for Mean Matrix of Matrix-Variate Elliptically Contoured Distributions
    Karamikabir, Hamid
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2024, 18 (02)
  • [44] Distributions of the compound and scale mixture of vector and spherical matrix variate elliptical distributions
    Diaz-Garcia, Jose A.
    Gutierrez-Jaimez, Ramon
    JOURNAL OF MULTIVARIATE ANALYSIS, 2011, 102 (01) : 143 - 152
  • [45] The inverse problem of multivariate and matrix-variate skew normal distributions
    Zheng, S.
    Hardin, J. M.
    Gupta, A. K.
    STATISTICS, 2012, 46 (03) : 361 - 371
  • [46] Matrix-variate risk measures under Wishart and gamma distributions
    Arias-Serna, Maria Andrea
    Caro-Lopera, Francisco Jose
    Loubes, Jean Michel
    JOURNAL OF CORPORATE ACCOUNTING AND FINANCE, 2025, 36 (01): : 9 - 23
  • [47] On matrix-variate Birnbaum-Saunders distributions and their estimation and application
    Sanchez, Luis
    Leiva, Victor
    Caro-Lopera, Francisco J.
    Cysneiros, Francisco Jose A.
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2015, 29 (04) : 790 - 812
  • [48] Fractional integrals in the matrix-variate cases and connection to statistical distributions
    Mathai, A. M.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2009, 20 (12) : 871 - 882
  • [49] Some complex matrix-variate statistical distributions on rectangular matrices
    Mathai, AM
    Provost, SB
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 410 : 198 - 216
  • [50] Wilks' factorization of the matrix-variate Dirichlet-Riesz distributions
    Tounsi, Mariem
    Zine, Raoudha
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (09) : 4494 - 4509