Duality between matrix variate t and matrix variate VG distributions

被引:3
|
作者
Haffar, Solomon W. [1 ]
Seneta, Eugene
Gupta, Arjun K.
机构
[1] Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[3] S Dakota State Univ, Dept Math & Stat, Brookings, SD 57007 USA
关键词
characteristic function; inversion theorem; inverted Wishart; log return; matrix generalized inverse Gaussian; matrix variate distributions; Wishart; variance-gamma;
D O I
10.1016/j.jmva.2005.09.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The (univariate) t-distribution and symmetric VG. distribution are competing models [D.S. Madan, E. Seneta, The variance gamma (V.G.) model for share market returns, J. Business 63 (1990) 511-524; T.W. Epps, Pricing Derivative Securities, World Scientific, Singapore, 2000 (Section 9.4)] for the distribution of log-increments of the price of a financial asset. Both result from scale-mixing of the normal distribution. The analogous matrix variate distributions and their characteristic functions are derived in the sequel and are dual to each other in the sense of a simple Duality Theorem. This theorem can thus be used to yield the derivation of the characteristic function of the t-distribution and is the essence of the idea used by Dreier and Kotz [A note on the characteristic function of the t-distribution, Statist. Probab. Lett. 57 (2002) 221-224]. The present paper generalizes the univariate ideas in Section 6 of Seneta [Fitting the variance-gamma (VG) model to financial data, stochastic methods and their applications, Papers in Honour of Chris Heyde, Applied Probability Trust, Sheffield, J. Appl. Probab. (Special Volume) 41A (2004) 177-187] to the general matrix generalized inverse gaussian (MGIG) distribution. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:1467 / 1475
页数:9
相关论文
共 50 条
  • [31] Jones-Balakrishnan Property for Matrix Variate Beta Distributions
    Nagar, Daya K.
    Roldan-Correa, Alejandro
    Nadarajah, Saralees
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2022, 85 (2): : 1489 - 1509
  • [32] Pseudo-inverse multivariate/matrix-variate distributions
    Zhang, Zhihua
    JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (08) : 1684 - 1692
  • [33] SOME DISTRIBUTIONS OF LATENT ROOTS OF A COMPLEX WISHART MATRIX VARIATE
    HIRAKAWA, F
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1975, 27 (02) : 357 - 363
  • [34] Matrix variate Cauchy distribution
    Bandekar, RR
    Nagar, DK
    STATISTICS, 2003, 37 (06) : 537 - 550
  • [35] A Matrix Variate Skew Distribution
    Akdemir, Deniz
    Gupta, Arjun K.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2010, 3 (02): : 128 - 140
  • [36] Jones-Balakrishnan Property for Matrix Variate Beta Distributions
    Nagar, Daya K.
    Roldan-Correa, Alejandro
    Nadarajah, Saralees
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2023, 85 (02): : 1489 - 1509
  • [37] Image Segmentation Using Matrix-Variate Lindley Distributions
    Mouna, Zitouni
    Mariem, Tounsi
    INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, ISDA 2021, 2022, 418 : 389 - 398
  • [38] Quadratic forms in disguised matrix T-variate
    Gupta, AK
    Nagar, DK
    STATISTICS, 1998, 30 (04) : 357 - 374
  • [39] Some properties of matrix-variate Laplace transforms and matrix-variate Whittaker functions
    Mathai, AM
    Pederzoli, G
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 253 : 209 - 226
  • [40] Robust Classification via Finite Mixtures of Matrix Variate Skew-t Distributions
    Mahdavi, Abbas
    Balakrishnan, Narayanaswamy
    Jamalizadeh, Ahad
    MATHEMATICS, 2024, 12 (20)