A multiset version of determinants and the Coin arrangements lemma

被引:1
|
作者
Faal, Hossein Teimoori [1 ]
机构
[1] Allameh Tabatabai Univ, Dept Math & Comp Sci, Tehran, Iran
关键词
Multiset version; Combinatorics on words; Cycle cover; Lyndon cover; Coin arrangements lemma;
D O I
10.1016/j.tcs.2019.04.010
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we first give a multiset version of the graph-theoretical interpretation of the classic determinant of a matrix A based on a multiset generalization of the cycle cover of its associated digraph D(A). Then, as a direct consequence of this interpretation, we present another algebraic proof of a weighted version of the original coin arrangements lemma. (C) 2019 Published by Elsevier B.V.
引用
收藏
页码:36 / 43
页数:8
相关论文
共 50 条
  • [21] An Algorithmic Version of Zariski's Lemma
    Wiesnet, Franziskus
    CONNECTING WITH COMPUTABILITY, 2021, 12813 : 469 - 482
  • [22] A NONLINEAR VERSION OF THE EQUIVALENT BIFURCATION LEMMA
    CICOGNA, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (24): : L1339 - L1343
  • [23] A NOTE ON A MATRIX VERSION OF THE FARKAS LEMMA
    Zalar, Aljaz
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (09) : 3420 - 3429
  • [24] A Robust Version of Hegedus's Lemma, with Applications
    Srinivasan, Srikanth
    PROCEEDINGS OF THE 52ND ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '20), 2020, : 1349 - 1362
  • [25] On a Continuous-Time Version of Willems' Lemma
    Lopez, Victor G.
    Mueller, Matthias A.
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 2759 - 2764
  • [26] An algorithmic version of the blow-up lemma
    Komlos, J
    Sarkozy, GN
    Szemeredi, E
    RANDOM STRUCTURES & ALGORITHMS, 1998, 12 (03) : 297 - 312
  • [27] On a new absolute version of Siegel’s lemma
    Maxwell Forst
    Lenny Fukshansky
    Research in the Mathematical Sciences, 2024, 11
  • [28] TIME-VARYING VERSION OF LEMMA OF LYAPUNOV
    ANDERSON, BD
    MOORE, JB
    ELECTRONICS LETTERS, 1967, 3 (07) : 293 - &
  • [29] THE RATE OF RETURN REGULATED VERSION OF SHEPHARD LEMMA
    FARE, R
    LOGAN, J
    ECONOMICS LETTERS, 1983, 13 (04) : 297 - 302
  • [30] STRONG VERSION OF SNAKE LEMMA IN EXACT CATEGORIES
    Rong, Shi
    Zhang, Pu
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2021, 23 (02) : 151 - 163