On a new absolute version of Siegel’s lemma

被引:0
|
作者
Maxwell Forst
Lenny Fukshansky
机构
[1] Claremont Graduate University,Institute of Mathematical Sciences
[2] Claremont McKenna College,Department of Mathematics
来源
关键词
Siegel’s lemma; Heights; 11G50; 11H06; 11D99;
D O I
暂无
中图分类号
学科分类号
摘要
We establish a new version of Siegel’s lemma over a number field k, providing a bound on the maximum of heights of basis vectors of a subspace of kN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^N$$\end{document}, N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \ge 2$$\end{document}. In addition to the small-height property, the basis vectors we obtain satisfy certain sparsity condition. Further, we produce a nontrivial bound on the heights of all the possible subspaces generated by subcollections of these basis vectors. Our bounds are absolute in the sense that they do not depend on the field of definition. The main novelty of our method is that it uses only linear algebra and does not rely on the geometry of numbers or the Dirichlet box principle employed in the previous works on this subject.
引用
收藏
相关论文
共 50 条
  • [1] On a new absolute version of Siegel's lemma
    Forst, Maxwell
    Fukshansky, Lenny
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2024, 11 (01)
  • [2] An absolute Siegel's Lemma
    Roy, D
    Lin, J
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1996, 476 : 1 - 26
  • [3] Addendum and erratum to an absolute Siegel's Lemma
    Roy, D
    Thunder, JL
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1999, 508 : 47 - 51
  • [4] On successive minima and the Absolute Siegel's Lemma
    Pekker, Alexander
    JOURNAL OF NUMBER THEORY, 2008, 128 (03) : 564 - 575
  • [5] A note on Siegel's lemma
    Masser, DW
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1996, 26 (03) : 1057 - 1068
  • [6] The Best Constant in Siegel’s Lemma
    Jeffrey D. Vaaler
    Monatshefte für Mathematik, 2003, 140 : 71 - 89
  • [7] Siegel's lemma with additional conditions
    Fukshansky, Lenny
    JOURNAL OF NUMBER THEORY, 2006, 120 (01) : 13 - 25
  • [8] The best constant in Siegel's Lemma
    Vaaler, JD
    MONATSHEFTE FUR MATHEMATIK, 2003, 140 (01): : 71 - 89
  • [9] ON SIEGEL LEMMA
    BOMBIERI, E
    VAALER, J
    INVENTIONES MATHEMATICAE, 1983, 73 (01) : 11 - 32
  • [10] A new version of Hill’s lemma for Cosserat continuum
    Qipeng Liu
    Archive of Applied Mechanics, 2015, 85 : 761 - 773