On a new absolute version of Siegel’s lemma

被引:0
|
作者
Maxwell Forst
Lenny Fukshansky
机构
[1] Claremont Graduate University,Institute of Mathematical Sciences
[2] Claremont McKenna College,Department of Mathematics
来源
关键词
Siegel’s lemma; Heights; 11G50; 11H06; 11D99;
D O I
暂无
中图分类号
学科分类号
摘要
We establish a new version of Siegel’s lemma over a number field k, providing a bound on the maximum of heights of basis vectors of a subspace of kN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^N$$\end{document}, N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \ge 2$$\end{document}. In addition to the small-height property, the basis vectors we obtain satisfy certain sparsity condition. Further, we produce a nontrivial bound on the heights of all the possible subspaces generated by subcollections of these basis vectors. Our bounds are absolute in the sense that they do not depend on the field of definition. The main novelty of our method is that it uses only linear algebra and does not rely on the geometry of numbers or the Dirichlet box principle employed in the previous works on this subject.
引用
收藏
相关论文
共 50 条
  • [21] A constrained version of Sauer's Lemma
    Ratsaby, J
    MATHEMATICS AND COMPUTER SCIENCE III: ALGORITHMS, TREES, COMBINATORICS AND PROBABILITIES, 2004, : 543 - 551
  • [22] An infinitary version of Sperner's Lemma
    Hohti, Aarno
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2006, 47 (03): : 503 - 514
  • [23] An Algorithmic Version of Zariski's Lemma
    Wiesnet, Franziskus
    CONNECTING WITH COMPUTABILITY, 2021, 12813 : 469 - 482
  • [24] Siegel's lemma is sharp for almost all linear systems
    Baker, Roger
    Masser, David
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2019, 51 (05) : 853 - 867
  • [25] A Robust Version of Hegedus's Lemma, with Applications
    Srinivasan, Srikanth
    PROCEEDINGS OF THE 52ND ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '20), 2020, : 1349 - 1362
  • [26] SIEGEL LEMMA FOR FUNCTION-FIELDS
    THUNDER, JL
    MICHIGAN MATHEMATICAL JOURNAL, 1995, 42 (01) : 147 - 162
  • [27] A Parametric Version of Forstnerič’s Splitting Lemma
    Lars Simon
    The Journal of Geometric Analysis, 2019, 29 : 2124 - 2146
  • [28] A version of Hill's lemma for Cosserat continuum
    Xikui Li Qipeng Liu The State Key Laboratory for Structural Analysis of Industrial Equipment. Dalian University of Technology
    Acta Mechanica Sinica, 2009, (04) : 499 - 506
  • [29] A version of Hill’s lemma for Cosserat continuum
    Xikui Li
    Qipeng Liu
    Acta Mechanica Sinica, 2009, 25 : 499 - 506
  • [30] A version of Hill's lemma for Cosserat continuum
    Li, Xikui
    Liu, Qipeng
    ACTA MECHANICA SINICA, 2009, 25 (04) : 499 - 506