Structure of subspaces of the compact operators having the Dunford-Pettis property

被引:12
|
作者
Saksman, E [1 ]
Tylli, HO [1 ]
机构
[1] Univ Helsinki, Dept Math, FIN-00014 Helsinki, Finland
关键词
D O I
10.1007/PL00004761
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The structure of the subspaces M subset of K (l(P)) having the Dunford-Pettis property (DPP) is studied, where K(l(P)) is the space of all compact operators on l(P) and 1 < p < infinity. The following conditions are shown to be equivalent: (i) M has the DPP, (ii) M is isomorphic to a subspace of co (iii) the sets {Sx : S is an element of B-M} subset of l(P) and {S*x* : S is an element of B-M} subset of l(P)' are relatively compact for all x is an element of l(P) and x* is an element of l(P)'. The equivalence between (i) and (iii) was recently proven in the case of arbitrary Hilbert spaces by Brown and Ulger. It is also shown that (i) and (ii) are equivalent for subspaces M subset of K (l(P)' + . . . + l(Pk)). This result is optimal in the sense that for 1 < p < q < infinity there is a DPP-subspace M subset of K (l(q)(l(P))) that fails to be isomorphic to a subspace of c(0). Mathematics Subject Classification (1991): 46B20, 46B28, 47D25.
引用
收藏
页码:411 / 425
页数:15
相关论文
共 50 条
  • [21] A NOTE ON DUNFORD-PETTIS OPERATORS
    HOLUB, JR
    GLASGOW MATHEMATICAL JOURNAL, 1987, 29 : 271 - 273
  • [22] The strong Dunford-Pettis relatively compact property of order p
    Ardakani, Halimeh
    Taghavinejad, Khadijeh
    Rezagholi, Sharifeh
    FILOMAT, 2023, 37 (22) : 7339 - 7349
  • [23] ON THE WEAK DUNFORD-PETTIS PROPERTY
    LEUNG, DH
    ARCHIV DER MATHEMATIK, 1989, 52 (04) : 363 - 364
  • [24] On the Product of Almost Dunford-Pettis and Order Weakly Compact Operators
    El Fahri, Kamal
    H'michane, Jawad
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2016, 10 (03) : 605 - 615
  • [25] ON THE CLASS OF ORDER DUNFORD-PETTIS OPERATORS
    Bouras, Khalid
    El Kaddouri, Abdelmonaim
    H'Michane, Jawad
    Moussa, Mohammed
    MATHEMATICA BOHEMICA, 2013, 138 (03): : 289 - 297
  • [26] Grothendieck spaces with the Dunford-Pettis property
    Albanese, Angela A.
    Bonet, Jose
    Ricker, Werner J.
    POSITIVITY, 2010, 14 (01) : 145 - 164
  • [27] Dunford-Pettis Properties and Spaces of Operators
    Ghenciu, Ioana
    Lewis, Paul
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2009, 52 (02): : 213 - 223
  • [28] The Dunford-Pettis property on spaces of polynomials
    Cilia, Raffaella
    Gutierrez, Joaquin M.
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2006, 69 (04): : 433 - 450
  • [29] Some remarks on the Dunford-Pettis property
    Randrianantoanina, N
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1997, 27 (04) : 1199 - 1213
  • [30] The Dunford-Pettis property on tensor products
    González, M
    Gutiérrez, JM
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2001, 131 : 185 - 192