Dunford-Pettis Properties and Spaces of Operators

被引:4
|
作者
Ghenciu, Ioana [1 ]
Lewis, Paul [2 ]
机构
[1] Univ Wisconsin, Dept Math, River Falls, WI 54022 USA
[2] Univ N Texas, Dept Math, Denton, TX 76203 USA
关键词
Dunford-Pettis property; Dunford-Pettis set; basic sequence; complemented spaces of operators; COMPACT-OPERATORS; SETS;
D O I
10.4153/CMB-2009-024-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
J. Elton used an application of Ramsey theory to show that if X is an infinite dimensional Banach space, then c(0) embeds in X, l(1) embeds in X, or there is a subspace of X that fails to have the Dunford-Pettis property. Bessaga and Pelczynski showed that if c(0) embeds in X*, then l(infinity) embeds in X*. Emmanuele and John showed that if co embeds in K(X, Y), then K(X, Y) is not complemented in L(X, Y). Classical results from Schauder basis theory are used in a study of Dunford-Pettis sets and strong Dunford-Pettis sets to extend each of the preceding theorems. The space L(w*) (X*; Y) of w* - w continuous operators is also studied.
引用
收藏
页码:213 / 223
页数:11
相关论文
共 50 条
  • [1] ON DUNFORD-PETTIS OPERATORS
    SAAB, E
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1982, 25 (02): : 207 - 209
  • [2] A note on Dunford-Pettis like properties and complemented spaces of operators
    Ghenciu, Ioana
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2018, 59 (02): : 207 - 222
  • [3] Strong Dunford-Pettis sets and spaces of operators
    Ghenciu, I
    Lewis, PW
    MONATSHEFTE FUR MATHEMATIK, 2005, 144 (04): : 275 - 284
  • [4] Dunford-Pettis like Sets with Applications to Spaces of Operators
    Ardakani, Halimeh
    Miranda, Vinicius C. C.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2025, 56 (01):
  • [7] A NOTE ON DUNFORD-PETTIS OPERATORS
    HOLUB, JR
    GLASGOW MATHEMATICAL JOURNAL, 1987, 29 : 271 - 273
  • [8] (Non-)Dunford-Pettis operators on noncommutative symmetric spaces
    Huang, Jinghao
    Pliev, Marat
    Sukochev, Fedor
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (11)
  • [9] ON THE CLASS OF ORDER DUNFORD-PETTIS OPERATORS
    Bouras, Khalid
    El Kaddouri, Abdelmonaim
    H'Michane, Jawad
    Moussa, Mohammed
    MATHEMATICA BOHEMICA, 2013, 138 (03): : 289 - 297
  • [10] Grothendieck spaces with the Dunford-Pettis property
    Albanese, Angela A.
    Bonet, Jose
    Ricker, Werner J.
    POSITIVITY, 2010, 14 (01) : 145 - 164