Dunford-Pettis Properties and Spaces of Operators

被引:4
|
作者
Ghenciu, Ioana [1 ]
Lewis, Paul [2 ]
机构
[1] Univ Wisconsin, Dept Math, River Falls, WI 54022 USA
[2] Univ N Texas, Dept Math, Denton, TX 76203 USA
关键词
Dunford-Pettis property; Dunford-Pettis set; basic sequence; complemented spaces of operators; COMPACT-OPERATORS; SETS;
D O I
10.4153/CMB-2009-024-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
J. Elton used an application of Ramsey theory to show that if X is an infinite dimensional Banach space, then c(0) embeds in X, l(1) embeds in X, or there is a subspace of X that fails to have the Dunford-Pettis property. Bessaga and Pelczynski showed that if c(0) embeds in X*, then l(infinity) embeds in X*. Emmanuele and John showed that if co embeds in K(X, Y), then K(X, Y) is not complemented in L(X, Y). Classical results from Schauder basis theory are used in a study of Dunford-Pettis sets and strong Dunford-Pettis sets to extend each of the preceding theorems. The space L(w*) (X*; Y) of w* - w continuous operators is also studied.
引用
收藏
页码:213 / 223
页数:11
相关论文
共 50 条
  • [21] Some Generalizations on Positive Dunford-Pettis Operators
    Aqzzouz, Belmesnaoui
    Bouras, Khalid
    Elbour, Aziz
    RESULTS IN MATHEMATICS, 2009, 54 (3-4) : 207 - 218
  • [22] DUNFORD-PETTIS OPERATORS ON BANACH-LATTICES
    ALIPRANTIS, CD
    BURKINSHAW, O
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 274 (01) : 227 - 238
  • [23] DUNFORD-PETTIS PROPERTY OF THE PRODUCT OF SOME OPERATORS
    Aqzzouz, Belmesnaoui
    Aboutafail, Othman
    Elbour, Aziz
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2011, 17 (04): : 295 - 299
  • [24] LIMITED AND DUNFORD-PETTIS OPERATORS ON BANACH LATTICES
    Bouras, Khalid
    El Aloui, Abdennabi
    Elbour, Aziz
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2019, 25 (03): : 205 - 210
  • [25] DUALS OF CERTAIN SPACES WITH DUNFORD-PETTIS PROPERTY
    STEGALL, CP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (07): : A799 - A799
  • [26] DUNFORD-PETTIS AND STRONGLY-DUNFORD-PETTIS OPERATORS ON L1(MU)
    HOLUB, JR
    GLASGOW MATHEMATICAL JOURNAL, 1989, 31 : 49 - 57
  • [27] Dunford-Pettis type properties and the Grothendieck property for function spaces
    Gabriyelyan, Saak
    Kakol, Jerzy
    REVISTA MATEMATICA COMPLUTENSE, 2020, 33 (03): : 871 - 884
  • [28] Positive almost Dunford-Pettis operators and their duality
    Aqzzouz, Belmesnaoui
    Elbour, Aziz
    Wickstead, Anthony W.
    POSITIVITY, 2011, 15 (02) : 185 - 197
  • [29] Unbounded absolutely weak Dunford-Pettis operators
    Erkursun Ozcan, Nazife
    Gezer, Niyazi Anil
    Zabeti, Omid
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (06) : 2731 - 2740
  • [30] On the class of weak(star) Dunford-Pettis operators
    El Kaddouri, A.
    H'michane, J.
    Bouras, K.
    Moussa, M.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2013, 62 (02) : 261 - 265