Regularity for C1,α Interface Transmission Problems

被引:0
|
作者
Caffarelli, Luis A. [1 ]
Soria-Carro, Maria [1 ]
Stinga, Pablo Raul [2 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Iowa State Univ, Dept Math, 396 Carver Hall, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00205-021-01611-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence, uniqueness, and optimal regularity of solutions to transmission problems for harmonic functions with C-1,C-alpha interfaces. For this, we develop a novel geometric stability argument based on the mean value property.
引用
收藏
页码:265 / 294
页数:30
相关论文
共 50 条
  • [41] C1 regularity of the stable subspaces with a general nonuniform dichotomy
    Jie Wang
    Advances in Difference Equations, 2012
  • [42] C1,ω(•)-regularity and Lipschitz-like properties of subdifferential
    Jourani, A.
    Thibault, L.
    Zagrodny, D.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2012, 105 : 189 - 223
  • [43] C1 Regularity for Infinity Harmonic Functions in Two Dimensions
    Ovidiu Savin
    Archive for Rational Mechanics and Analysis, 2005, 176 : 351 - 361
  • [44] A C1 REGULARITY RESULT FOR THE INHOMOGENEOUS NORMALIZED INFINITY LAPLACIAN
    Crasta, Graziano
    Fragala, Ilaria
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (06) : 2547 - 2558
  • [45] Regularity for Robin boundary problems of Laplace equations and Hardy spaces on C1 and (semi-)convex domains
    Yang, Sibei
    Sickel, Winfried
    Yang, Dachun
    Yuan, Wen
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 279 : 198 - 244
  • [46] Brinkman-type Operators on Riemannian Manifolds: Transmission Problems in Lipschitz and C1 Domains
    Mirela Kohr
    Cornel Pintea
    Wolfgang L. Wendland
    Potential Analysis, 2010, 32 : 229 - 273
  • [47] DIRICHLET - TRANSMISSION PROBLEMS FOR GENERAL BRINKMAN OPERATORS ON LIPSCHITZ AND C1 DOMAINS IN RIEMANNIAN MANIFOLDS
    Kohr, Mirela
    Pintea, Cornel
    Wendland, Wolfgang L.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 15 (04): : 999 - 1018
  • [48] C1 REGULARITY OF ORTHOTROPIC p-HARMONIC FUNCTIONS IN THE PLANE
    Bousquet, Pierre
    Brasco, Lorenzo
    ANALYSIS & PDE, 2018, 11 (04): : 813 - 854
  • [49] ON THE C1,α REGULARITY OF p-HARMONIC FUNCTIONS IN THE HEISENBERG GROUP
    Ricciotti, Diego
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (07) : 2937 - 2952
  • [50] C1,α-Regularity for p-Harmonic Functions in SU(3)
    Yu, Chengwei
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2024, 37 (04): : 427 - 466