IDENTIFYING FUSION EVENTS IN FLUORESCENCE MICROSCOPY IMAGES

被引:2
|
作者
Godinez, W. J. [1 ,2 ]
Lampe, M. [3 ]
Woerz, S. [1 ,2 ]
Eils, R. [1 ,2 ]
Mueller, B. [3 ]
Rohr, K. [1 ,2 ]
机构
[1] Heidelberg Univ, BIOQUANT, IPMB, Neuenheimer Feld 267, D-69120 Heidelberg, Germany
[2] DKFZ Heidelberg, Biomed Comp Vis Grp, Dept Bioinformat & Funct Genom, D-69120 Heidelberg, Germany
[3] Heidelberg Univ, Dept Virol, D-69120 Heidelberg, Germany
来源
2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2 | 2009年
关键词
Biomedical imaging; microscopy images; tracking; virus particles; behavior identification; TRACKING; ALGORITHM; DYNAMICS; MOTION;
D O I
10.1109/ISBI.2009.5193266
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We are investigating the dynamical relationships exhibited by virus particles via fluorescence time-lapse microscopy. To obtain a quantitative description of each particle over time, these objects are tracked. To derive an explicit characterization of each particle as well as to identify interesting transient behaviors, the intensity over time of each particle needs to be analyzed. We have developed an approach based on hybrid stochastic systems for identifying behaviors of interest. We employ a hybrid particle filter for estimating the behavior of individual particles. The approach has been successfully applied to particles tracked in synthetic image sequences as well as in real image sequences displaying HIV-1 particles.
引用
收藏
页码:1170 / +
页数:2
相关论文
共 50 条
  • [31] Probabilistic tracking of virus particles in fluorescence microscopy images
    Godinez, W. J.
    Lampe, M.
    Woerz, S.
    Mueller, B.
    Eils, R.
    Rohr, K.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 272 - +
  • [32] Automated Podosome Identification and Characterization in Fluorescence Microscopy Images
    Meddens, Marjolein B. M.
    Rieger, Bernd
    Figdor, Carl G.
    Cambi, Alessandra
    van den Dries, Koen
    MICROSCOPY AND MICROANALYSIS, 2013, 19 (01) : 180 - 189
  • [33] Automatic noise quantification for confocal fluorescence microscopy images
    Paul, Perrine
    Duessmann, Heiko
    Bernas, Tytus
    Huber, Heinrich
    Kalamatianos, Dimitrios
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2010, 34 (06) : 426 - 434
  • [34] A SEGMENTATION FRAMEWORK FOR PHASE CONTRAST AND FLUORESCENCE MICROSCOPY IMAGES
    Alioscha-Perez, Mitchel
    Willaert, Ronnie
    Sahli, Hichem
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2014, 28 (07)
  • [35] Boundary Fitting Based Segmentation of Fluorescence Microscopy Images
    Lee, Soonam
    Salama, Paul
    Dunn, Kenneth W.
    Delp, Edward J.
    IMAGING AND MULTIMEDIA ANALYTICS IN A WEB AND MOBILE WORLD 2015, 2015, 9408
  • [36] Quantitative Detection of Single Molecules in Fluorescence Microscopy Images
    Peterson, Eric M.
    Harris, Joel M.
    ANALYTICAL CHEMISTRY, 2010, 82 (01) : 189 - 196
  • [37] Automatic Annotation of Leishmania Infections in Fluorescence Microscopy Images
    Neves, Joao C.
    Castro, Helena
    Proenca, Hugo
    Coimbra, Miguel
    IMAGE ANALYSIS AND RECOGNITION, 2013, 7950 : 613 - 620
  • [38] Asbestos Detection with Fluorescence Microscopy Images and Deep Learning
    Cai, Changjie
    Nishimura, Tomoki
    Hwang, Jooyeon
    Hu, Xiao-Ming
    Kuroda, Akio
    SENSORS, 2021, 21 (13)
  • [39] Subcellular Localization Algorithm Based On Fluorescence Microscopy Images
    Li, Chao
    Wang, Xue-Hong
    Zheng, Li
    Huang, Ji-Feng
    PROCEEDINGS IWBBIO 2013: INTERNATIONAL WORK-CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, 2013, : 171 - 177
  • [40] Deep probabilistic tracking of particles in fluorescence microscopy images
    Spilger, Roman
    Lee, Ji-Young
    Chagin, Vadim O.
    Schermelleh, Lothar
    Cardoso, M. Cristina
    Bartenschlager, Ralf
    Rohr, Karl
    MEDICAL IMAGE ANALYSIS, 2021, 72