IDENTIFYING FUSION EVENTS IN FLUORESCENCE MICROSCOPY IMAGES

被引:2
|
作者
Godinez, W. J. [1 ,2 ]
Lampe, M. [3 ]
Woerz, S. [1 ,2 ]
Eils, R. [1 ,2 ]
Mueller, B. [3 ]
Rohr, K. [1 ,2 ]
机构
[1] Heidelberg Univ, BIOQUANT, IPMB, Neuenheimer Feld 267, D-69120 Heidelberg, Germany
[2] DKFZ Heidelberg, Biomed Comp Vis Grp, Dept Bioinformat & Funct Genom, D-69120 Heidelberg, Germany
[3] Heidelberg Univ, Dept Virol, D-69120 Heidelberg, Germany
关键词
Biomedical imaging; microscopy images; tracking; virus particles; behavior identification; TRACKING; ALGORITHM; DYNAMICS; MOTION;
D O I
10.1109/ISBI.2009.5193266
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We are investigating the dynamical relationships exhibited by virus particles via fluorescence time-lapse microscopy. To obtain a quantitative description of each particle over time, these objects are tracked. To derive an explicit characterization of each particle as well as to identify interesting transient behaviors, the intensity over time of each particle needs to be analyzed. We have developed an approach based on hybrid stochastic systems for identifying behaviors of interest. We employ a hybrid particle filter for estimating the behavior of individual particles. The approach has been successfully applied to particles tracked in synthetic image sequences as well as in real image sequences displaying HIV-1 particles.
引用
收藏
页码:1170 / +
页数:2
相关论文
共 50 条
  • [1] Data fusion and smoothing for probabilistic tracking of viral structures in fluorescence microscopy images
    Ritter, C.
    Wollmann, T.
    Lee, J-Y
    Imle, A.
    Mueller, B.
    Fackler, O. T.
    Bartenschlager, R.
    Rohr, K.
    MEDICAL IMAGE ANALYSIS, 2021, 73
  • [2] Analysis of multivariate images in fluorescence microscopy
    Peltier, Caroline
    Winckler, Pascale
    Dujourdy, Laurence
    Bechoua, Shaliha
    Perrier-Cornet, Jean Marie
    METHODS AND APPLICATIONS IN FLUORESCENCE, 2019, 7 (03):
  • [3] Quantification and calibration of images in fluorescence microscopy
    Baskin, David S.
    Widmayer, Marsha A.
    Sharpe, Martyn A.
    ANALYTICAL BIOCHEMISTRY, 2010, 404 (02) : 118 - 126
  • [4] Myelin Segmentation in Fluorescence Microscopy Images
    Yetis, Sibel Cimen
    Ekinci, Dursun A.
    Cakir, Ertan
    Eksioglu, Ender M.
    Ayten, Umut E.
    Capar, Abdulkerim
    Toreyin, B. Ugur
    Kerman, Bilal E.
    2019 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2019, : 141 - 144
  • [5] ADAPTIVE OPTIMIZATION OF IMAGES FOR FLUORESCENCE MICROSCOPY
    Perucho Lozano, Carlos Javier
    Plata Gomez, Arturo
    Mendoza Carreno, Edwin Fernando
    REVISTA INNOVACIENCIA, 2016, 4 (01): : 19 - 24
  • [6] Aro: a machine learning approach to identifying single molecules and estimating classification error in fluorescence microscopy images
    Wu, Allison Chia-Yi
    Rifkin, Scott A.
    BMC BIOINFORMATICS, 2015, 16
  • [7] Aro: a machine learning approach to identifying single molecules and estimating classification error in fluorescence microscopy images
    Allison Chia-Yi Wu
    Scott A Rifkin
    BMC Bioinformatics, 16
  • [8] Detection and segmentation of morphologically complex eukaryotic cells in fluorescence microscopy images via feature pyramid fusion
    Korfhage, Nikolaus
    Muehling, Markus
    Ringshandl, Stephan
    Becker, Anke
    Schmeck, Bernd
    Freisleben, Bernd
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (09)
  • [9] Optically sectioned images in widefield fluorescence microscopy
    Wilson, T
    Neil, MAA
    Juskaitis, R
    THREE-DIMENSIONAL AND MULTIDIMENSIONAL MICROSCOPY: IMAGE ACQUISITION AND PROCESSING V, PROCEEDINGS OF, 1998, 3261 : 4 - 6
  • [10] Deconvolving Active Contours for Fluorescence Microscopy Images
    Helmuth, Jo A.
    Sbalzarini, Ivo F.
    ADVANCES IN VISUAL COMPUTING, PT 1, PROCEEDINGS, 2009, 5875 : 544 - +