Using instance-level constraints in agglomerative hierarchical clustering: theoretical and empirical results

被引:42
|
作者
Davidson, Ian [1 ]
Ravi, S. S. [2 ]
机构
[1] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA
[2] SUNY Albany, Dept Comp Sci, Albany, NY 12222 USA
基金
美国国家科学基金会;
关键词
Clustering; Constrained clustering; Semi-supervised learning;
D O I
10.1007/s10618-008-0103-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering with constraints is a powerful method that allows users to specify background knowledge and the expected cluster properties. Significant work has explored the incorporation of instance-level constraints into non-hierarchical clustering but not into hierarchical clustering algorithms. In this paper we present a formal complexity analysis of the problem and show that constraints can be used to not only improve the quality of the resultant dendrogram but also the efficiency of the algorithms. This is particularly important since many agglomerative style algorithms have running times that are quadratic ( or faster growing) functions of the number of instances to be clustered. We present several bounds on the improvement in the running times of algorithms obtainable using constraints.
引用
收藏
页码:257 / 282
页数:26
相关论文
共 50 条
  • [41] Instance-level Image Retrieval using Reranking Transformers
    Tan, Fuwen
    Yuan, Jiangbo
    Ordonez, Vicente
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 12085 - 12095
  • [42] Hierarchical Agglomerative Clustering Using Common Neighbours Similarity
    Makrehchi, Masoud
    2016 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2016), 2016, : 546 - 551
  • [43] Anomaly Detection Using Agglomerative Hierarchical Clustering Algorithm
    Mazarbhuiya, Fokrul Alom
    AlZahrani, Mohammed Y.
    Georgieva, Lilia
    INFORMATION SCIENCE AND APPLICATIONS 2018, ICISA 2018, 2019, 514 : 475 - 484
  • [44] Development of an efficient hierarchical clustering analysis using an agglomerative clustering algorithm
    Naeem, Arshia
    Rehman, Mariam
    Anjum, Maria
    Asif, Muhammad
    CURRENT SCIENCE, 2019, 117 (06): : 1045 - 1053
  • [45] Applicability and Interpretability of Ward's Hierarchical Agglomerative Clustering With or Without Contiguity Constraints
    Randriamihamison, Nathanael
    Vialaneix, Nathalie
    Neuvial, Pierre
    JOURNAL OF CLASSIFICATION, 2021, 38 (02) : 363 - 389
  • [46] Applicability and Interpretability of Ward’s Hierarchical Agglomerative Clustering With or Without Contiguity Constraints
    Nathanaël Randriamihamison
    Nathalie Vialaneix
    Pierre Neuvial
    Journal of Classification, 2021, 38 : 363 - 389
  • [47] Instance-level Object Recognition Using Deep Temporal Coherence
    Lagunes-Fortiz, Miguel
    Damen, Dima
    Mayol-Cuevas, Walterio
    ADVANCES IN VISUAL COMPUTING, ISVC 2018, 2018, 11241 : 274 - 285
  • [48] Hierarchical clustering using constraints
    Kant, Mariana
    LeBon, Maurice
    Sankoff, David
    BIOINFORMATICS RESEARCH AND APPLICATIONS, 2008, 4983 : 2 - +
  • [49] Clustering Acoustic Segments Using Multi-Stage Agglomerative Hierarchical Clustering
    Lerato, Lerato
    Niesler, Thomas
    PLOS ONE, 2015, 10 (10):
  • [50] Horizontal Partitioning of Multimedia Databases Using Hierarchical Agglomerative Clustering
    Rodriguez-Mazahua, Lisbeth
    Alor-Hernandez, Giner
    Antonieta Abud-Figueroa, Ma.
    Gustavo Pelaez-Camarena, S.
    NATURE-INSPIRED COMPUTATION AND MACHINE LEARNING, PT II, 2014, 8857 : 296 - 309