Using instance-level constraints in agglomerative hierarchical clustering: theoretical and empirical results

被引:42
|
作者
Davidson, Ian [1 ]
Ravi, S. S. [2 ]
机构
[1] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA
[2] SUNY Albany, Dept Comp Sci, Albany, NY 12222 USA
基金
美国国家科学基金会;
关键词
Clustering; Constrained clustering; Semi-supervised learning;
D O I
10.1007/s10618-008-0103-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering with constraints is a powerful method that allows users to specify background knowledge and the expected cluster properties. Significant work has explored the incorporation of instance-level constraints into non-hierarchical clustering but not into hierarchical clustering algorithms. In this paper we present a formal complexity analysis of the problem and show that constraints can be used to not only improve the quality of the resultant dendrogram but also the efficiency of the algorithms. This is particularly important since many agglomerative style algorithms have running times that are quadratic ( or faster growing) functions of the number of instances to be clustered. We present several bounds on the improvement in the running times of algorithms obtainable using constraints.
引用
收藏
页码:257 / 282
页数:26
相关论文
共 50 条
  • [31] Competence maps using agglomerative hierarchical clustering
    Ahmad Barirani
    Bruno Agard
    Catherine Beaudry
    Journal of Intelligent Manufacturing, 2013, 24 : 373 - 384
  • [32] Customer Segmentation Using Hierarchical Agglomerative Clustering
    Phan Duy Hung
    Nguyen Thi Thuy Lien
    Nguyen Duc Ngoc
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND SYSTEMS (ICISS 2019), 2019, : 33 - 37
  • [33] Competence maps using agglomerative hierarchical clustering
    Barirani, Ahmad
    Agard, Bruno
    Beaudry, Catherine
    JOURNAL OF INTELLIGENT MANUFACTURING, 2013, 24 (02) : 373 - 384
  • [34] Contrastive visual clustering for improving instance-level contrastive learning as a plugin
    Liu, Yue
    Zan, Xiangzhen
    Li, Xianbin
    Liu, Wenbin
    Fang, Gang
    PATTERN RECOGNITION, 2024, 154
  • [35] On a New Evidential C-Means Algorithm with Instance-Level Constraints
    Xie, Jiarui
    Antoine, Violaine
    SCALABLE UNCERTAINTY MANAGEMENT, SUM 2019, 2019, 11940 : 66 - 78
  • [36] Semi-Supervised Affinity Propagation with Soft Instance-Level Constraints
    Arzeno, Natalia M.
    Vikalo, Haris
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (05) : 1041 - 1052
  • [37] Semantic Clustering of Functional Requirements Using Agglomerative Hierarchical Clustering
    Salman, Hamzeh Eyal
    Hammad, Mustafa
    Seriai, Abdelhak-Djamel
    Al-Sbou, Ahed
    INFORMATION, 2018, 9 (09)
  • [38] Semi-Supervised Agglomerative Hierarchical Clustering Algorithms with Pairwise Constraints
    Miyamoto, Sadaaki
    Terami, Akihisa
    2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [39] Semi-supervised Agglomerative Hierarchical Clustering Using Clusterwise Tolerance Based Pairwise Constraints
    Hamasuna, Yukihiro
    Endo, Yasunori
    Miyamoto, Sadaaki
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI), 2010, 6408 : 152 - 162
  • [40] Design Level Class Decomposition using the Threshold-based Hierarchical Agglomerative Clustering
    Priyambadha, Bayu
    Katayama, Tetsuro
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (03) : 57 - 64