Web services classification via combining Doc2Vec and LINE model

被引:4
|
作者
Ye, Hongfan [1 ]
Cao, Buqing [1 ]
Geng, Jinkun [1 ]
Wen, Yiping [1 ]
机构
[1] Hunan Univ Sci & Technol, Sch Comp Sci & Engn, Xiangtan 411201, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
web services classification; content semantic; network structure; LINE; Doc2Vec; SELECTION;
D O I
10.1504/IJCSE.2020.111433
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Classifying web services with similar functionality from tremendous amount of web services can significantly improve the efficiency of service discovery. Few of the web services classification researches integrate the independent mining of the content semantic information and network structure information hidden in the web service characterisation documents. Therefore, we propose a web service classification method combining them. So, the Doc2Vec algorithm is firstly exploited to deeply mine the functional semantics of web service characterisation documents and obtain web service's content semantic representation. Then, the LINE algorithm is adopted to embed the web service information network which is constructed by utilising web service characterisation documents and word information. Subsequently, the content semantic representation and network structure representation of web service are integrated as the input of the logistic regression classifier to perform web service classification. The experimental results on the ProgrammableWeb dataset verify that the proposed method outperforms to baseline methods.
引用
收藏
页码:250 / 261
页数:12
相关论文
共 50 条
  • [41] Detecting Semantic-based Similarity Between Verses of The Quran with Doc2vec
    Alshammeri, Menwa
    Atwell, Eric
    Alsalka, Mhd Ammar
    AI IN COMPUTATIONAL LINGUISTICS, 2021, 189 : 351 - 358
  • [42] Mining Stack Overflow for API class recommendation using DOC2VEC and LDA
    Lee, Wai Keat
    Su, Moon Ting
    IET SOFTWARE, 2021, 15 (05) : 308 - 322
  • [43] 基于词向量Doc2vec的双向LSTM情感分析
    张俊飞
    毕志升
    吴小玲
    计算机与数字工程, 2018, 46 (12) : 2385 - 2389+2399
  • [44] Cyberbullying Detection on Indonesian Twitter using Doc2Vec and Convolutional Neural Network
    Laxmi, Shindy Trimaria
    Rismala, Rita
    Nurrahmi, Hani
    2021 9th International Conference on Information and Communication Technology, ICoICT 2021, 2021, : 82 - 86
  • [45] Author Profiling with Doc2vec Neural Network-Based Document Embeddings
    Markov, Ilia
    Gomez-Adorno, Helena
    Posadas-Duran, Juan-Pablo
    Sidorov, Grigori
    Gelbukh, Alexander
    ADVANCES IN SOFT COMPUTING, MICAI 2016, PT II, 2017, 10062 : 117 - 131
  • [46] Doc2vec在薪水预测中的应用研究
    潘博
    张青川
    于重重
    曹帅
    计算机应用研究, 2018, 35 (01) : 155 - 157
  • [47] 基于doc2vec的主观题自动评分应用
    肖灵云
    刘军库
    李春红
    现代计算机, 2022, 28 (01) : 79 - 82+95
  • [48] Doc2Vec, SBERT, InferSent, and USE Which embedding technique for noun phrases?
    Ajallouda, Lahbib
    Najmani, Kawtar
    Zellou, Ahmed
    Benlahmar, El Habib
    2022 2ND INTERNATIONAL CONFERENCE ON INNOVATIVE RESEARCH IN APPLIED SCIENCE, ENGINEERING AND TECHNOLOGY (IRASET'2022), 2022, : 548 - 552
  • [49] 基于Doc2Vec的期刊论文热点选题识别
    阮光册
    夏磊
    情报理论与实践 , 2019, (04) : 107 - 111+106
  • [50] 结合Doc2Vec和BERT嵌入技术的补丁验证方法
    黄颖
    姜淑娟
    蒋婷婷
    计算机科学, 2022, 49 (11) : 83 - 89