Web services classification via combining Doc2Vec and LINE model

被引:4
|
作者
Ye, Hongfan [1 ]
Cao, Buqing [1 ]
Geng, Jinkun [1 ]
Wen, Yiping [1 ]
机构
[1] Hunan Univ Sci & Technol, Sch Comp Sci & Engn, Xiangtan 411201, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
web services classification; content semantic; network structure; LINE; Doc2Vec; SELECTION;
D O I
10.1504/IJCSE.2020.111433
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Classifying web services with similar functionality from tremendous amount of web services can significantly improve the efficiency of service discovery. Few of the web services classification researches integrate the independent mining of the content semantic information and network structure information hidden in the web service characterisation documents. Therefore, we propose a web service classification method combining them. So, the Doc2Vec algorithm is firstly exploited to deeply mine the functional semantics of web service characterisation documents and obtain web service's content semantic representation. Then, the LINE algorithm is adopted to embed the web service information network which is constructed by utilising web service characterisation documents and word information. Subsequently, the content semantic representation and network structure representation of web service are integrated as the input of the logistic regression classifier to perform web service classification. The experimental results on the ProgrammableWeb dataset verify that the proposed method outperforms to baseline methods.
引用
收藏
页码:250 / 261
页数:12
相关论文
共 50 条
  • [31] Sentiment Analysis on Twitter data with Semi-Supervised Doc2Vec
    Bilgin, Metin
    Senturk, Izzet Fatih
    2017 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2017, : 661 - 666
  • [32] Filtering Malicious Java']JavaScript Code with Doc2Vec on an Imbalanced Dataset
    Mimura, Mamoru
    Suga, Yuya
    2019 14TH ASIA JOINT CONFERENCE ON INFORMATION SECURITY (ASIAJCIS 2019), 2019, : 24 - 31
  • [33] A doc2vec and local outlier factor approach to measuring the novelty of patents
    Jeon, Daeseong
    Ahn, Joon Mo
    Kim, Juram
    Lee, Changyong
    TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2022, 174
  • [34] Recommendation method for academic journal submission based on doc2vec and XGBoost
    Huang ZhengWei
    Min JinTao
    Yang YanNi
    Huang Jin
    Tian Ye
    Scientometrics, 2022, 127 : 2381 - 2394
  • [35] Bug Prediction Using Source Code Embedding Based on Doc2Vec
    Aladics, Tamas
    Jasz, Judit
    Ferenc, Rudolf
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT VII, 2021, 12955 : 382 - 397
  • [36] Recommendation method for academic journal submission based on doc2vec and XGBoost
    Huang Zhengwei
    Min Jintao
    Yang Yanni
    Huang Jin
    Tian Ye
    SCIENTOMETRICS, 2022, 127 (05) : 2381 - 2394
  • [37] Semi-supervised Turkish Text Categorization with Word2Vec, Doc2Vec and FastText Algorithms
    Erdinc, Hakki Yagiz
    Guran, Aysun
    2019 27TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2019,
  • [38] 基于Doc2Vec与SVM的聊天内容过滤
    岳文应
    计算机系统应用, 2018, 27 (07) : 127 - 132
  • [39] 基于Doc2vec的专利与行业类目映射研究
    马晓萌
    徐峰
    刘清民
    封颖
    情报探索, 2020, (06) : 67 - 74
  • [40] Neural Network Doc2vec in Automated Sentiment Analysis for Short Informal Texts
    Maslova, Natalia
    Potapov, Vsevolod
    SPEECH AND COMPUTER, SPECOM 2017, 2017, 10458 : 546 - 554