New upper bounds for the numerical radius of Hilbert space operators

被引:52
|
作者
Bhunia, Pintu [1 ]
Paul, Kallol [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
来源
关键词
Numerical radius; Hilbert space; Bounded linear operator; Inequality;
D O I
10.1016/j.bulsci.2021.102959
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present new upper bounds for the numerical radius of bounded linear operators defined on a complex Hilbert space. Further we obtain estimations for upper bounds for the numerical radius of the sum of the product of bounded linear operators. We show that the bounds obtained here improve on the existing well-known upper bounds. (C) 2021 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Norm and numerical radius inequalities for Hilbert space operators
    Bani-Domi, Watheq
    Kittaneh, Fuad
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (05): : 934 - 945
  • [42] Some Inequalities for the Numerical Radius of Hilbert Space Operators
    Gao, Fugen
    Hu, Yijuan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (07)
  • [43] Furtherance of numerical radius inequalities of Hilbert space operators
    Bhunia, Pintu
    Paul, Kallol
    ARCHIV DER MATHEMATIK, 2021, 117 (05) : 537 - 546
  • [44] Some new refinements of numerical radius inequalities for Hilbert and semi-Hilbert space operators
    Taki, Zakaria
    Kaadoud, Mohamed Chraibi
    FILOMAT, 2023, 37 (20) : 6925 - 6947
  • [45] Better bounds on the numerical radii of Hilbert space operators
    Omidvar, Mohsen Erfanian
    Moradi, Hamid Reza
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 604 : 265 - 277
  • [46] Some New Refinements of Generalized Numerical Radius Inequalities for Hilbert Space Operators
    Kais Feki
    Fuad Kittaneh
    Mediterranean Journal of Mathematics, 2022, 19
  • [47] Some New Refinements of Generalized Numerical Radius Inequalities for Hilbert Space Operators
    Feki, Kais
    Kittaneh, Fuad
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)
  • [48] Some sharp bounds for the Hilbert-Schmidt numerical radius of operators
    Soumia, Aici
    Abdelkader, Frakis
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2024, 27 (07) : 1481 - 1489
  • [49] UPPER AND LOWER BOUNDS FOR THE NUMERICAL RADIUS WITH AN APPLICATION TO INVOLUTION OPERATORS
    Abu-Omar, Amer
    Kittaneh, Fuad
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2015, 45 (04) : 1055 - 1065
  • [50] Some Upper Bounds for the Berezin Number of Hilbert Space Operators
    Taghavi, Ali
    Roushan, Tahere Azimi
    Darvish, Vahid
    FILOMAT, 2019, 33 (14) : 4353 - 4360