New upper bounds for the numerical radius of Hilbert space operators

被引:52
|
作者
Bhunia, Pintu [1 ]
Paul, Kallol [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
来源
关键词
Numerical radius; Hilbert space; Bounded linear operator; Inequality;
D O I
10.1016/j.bulsci.2021.102959
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present new upper bounds for the numerical radius of bounded linear operators defined on a complex Hilbert space. Further we obtain estimations for upper bounds for the numerical radius of the sum of the product of bounded linear operators. We show that the bounds obtained here improve on the existing well-known upper bounds. (C) 2021 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Another generalization of the numerical radius for Hilbert space operators
    Zamani, Ali
    Wojcik, Pawel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 609 : 114 - 128
  • [32] ON SOME NUMERICAL RADIUS INEQUALITIES FOR HILBERT SPACE OPERATORS
    Ghasvareh, Mahdi
    Omidvar, Mohsen Erfanian
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2021, 27 (02): : 192 - 197
  • [33] Norm and numerical radius inequalities for Hilbert space operators
    Baharak Moosavi
    Mohsen Shah Hosseini
    The Journal of Analysis, 2023, 31 : 1393 - 1400
  • [34] Another generalization of the numerical radius for Hilbert space operators
    Zamani, Ali
    Wójcik, Pawel
    Linear Algebra and Its Applications, 2022, 609 : 114 - 128
  • [35] REFINING NUMERICAL RADIUS INEQUALITIES OF HILBERT SPACE OPERATORS
    Khorasani, Mohammad Ali Shiran
    Heydarbeygi, Zahra
    MATEMATICKI VESNIK, 2023, 75 (01): : 50 - 57
  • [36] FURTHER INEQUALITIES FOR THE NUMERICAL RADIUS OF HILBERT SPACE OPERATORS
    Tafazoli, Sara
    Moradi, Hamid Reza
    Furuichi, Shigeru
    Harikrishnan, Panackal
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (04): : 955 - 967
  • [37] Numerical Radius Inequalities for Commutators of Hilbert Space Operators
    Hirzallah, Omar
    Kittaneh, Fuad
    Shebrawi, Khalid
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (07) : 739 - 749
  • [38] ON THE ESTIMATION OF q -NUMERICAL RADIUS OF HILBERT SPACE OPERATORS
    Atra, Arnab
    Roy, Alguni
    OPERATORS AND MATRICES, 2024, 18 (02): : 343 - 359
  • [39] Furtherance of numerical radius inequalities of Hilbert space operators
    Pintu Bhunia
    Kallol Paul
    Archiv der Mathematik, 2021, 117 : 537 - 546
  • [40] SOME INEQUALITIES FOR THE NUMERICAL RADIUS FOR HILBERT SPACE OPERATORS
    Hosseini, Mohsen Shah
    Omidvar, Mohsen Erfanian
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 94 (03) : 489 - 496