Bogoyavlensky-Volterra and Birkhoff integrable systems

被引:8
|
作者
Damianou, PA [1 ]
Kouzaris, SP [1 ]
机构
[1] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
关键词
Bogoyavlensky-Volterra lattices; Birkhoff integrable systems; Toda lattice; Poisson brackets;
D O I
10.1016/j.physd.2004.03.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we examine an interesting connection between the generalized Volterra lattices of Bogoyavlensky and a special case of an integrable system defined by Sklyanin. The Sklyanin system happens to be one of the cases in the classification of Kozlov and Treshchev of Birkhoff integrable Hamiltonian systems. Using this connection we demonstrate the integrability of the system and define a new Lax pair representation. In addition, we comment on the bi-Hamiltonian structure of the system. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:50 / 66
页数:17
相关论文
共 50 条
  • [42] A family of integrable maps associated with the Volterra lattice
    Hone, A. N. W.
    Roberts, J. A. G.
    Vanhaecke, P.
    NONLINEARITY, 2024, 37 (09)
  • [43] On an Integrable Discretisation of the Lotka-Volterra System
    He, Yang
    Sun, Yajuan
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1295 - 1298
  • [45] Integrable boundary conditions of the modified Volterra model
    Kajinaga, Y
    Wadati, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (10) : 3021 - 3025
  • [46] INTEGRABLE DISCRETISATION OF THE LOTKA-VOLTERRA SYSTEM
    He, Yang
    Sun, Yajuan
    Shang, Zaijiu
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2015, 33 (05): : 468 - 494
  • [47] Bogoyavlensky-Toda systems of type DN
    Damianou, PA
    Kouzaris, SP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (05): : 1385 - 1399
  • [48] A new multi-component discrete integrable hierarchy and multi-component cubic Volterra integrable hierarchy as well as their coupling systems
    Xu, Xiuli
    Gong, Xinbo
    Zhang, Yufeng
    CHAOS SOLITONS & FRACTALS, 2009, 39 (01) : 363 - 368
  • [49] Integrable nonholonomic deformation of modified Volterra lattice equation
    Zhao, Hai-qiong
    APPLIED MATHEMATICS LETTERS, 2019, 94 : 286 - 291
  • [50] On Fractional Volterra Integrodifferential Equations with Fractional Integrable Impulses
    Sutar, Sagar T.
    Kucche, Kishor D.
    MATHEMATICAL MODELLING AND ANALYSIS, 2019, 24 (03) : 457 - 477