Bogoyavlensky-Volterra lattices;
Birkhoff integrable systems;
Toda lattice;
Poisson brackets;
D O I:
10.1016/j.physd.2004.03.009
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper we examine an interesting connection between the generalized Volterra lattices of Bogoyavlensky and a special case of an integrable system defined by Sklyanin. The Sklyanin system happens to be one of the cases in the classification of Kozlov and Treshchev of Birkhoff integrable Hamiltonian systems. Using this connection we demonstrate the integrability of the system and define a new Lax pair representation. In addition, we comment on the bi-Hamiltonian structure of the system. (C) 2004 Elsevier B.V. All rights reserved.
机构:
School of Mathematics & Statistics, University of New South Wales, Sydney,NSW,2052, AustraliaSchool of Mathematics & Statistics, University of New South Wales, Sydney,NSW,2052, Australia
Hone, A.N.W.
Roberts, J.A.G.
论文数: 0引用数: 0
h-index: 0
机构:
School of Mathematics & Statistics, University of New South Wales, Sydney,NSW,2052, AustraliaSchool of Mathematics & Statistics, University of New South Wales, Sydney,NSW,2052, Australia
Roberts, J.A.G.
Vanhaecke, P.
论文数: 0引用数: 0
h-index: 0
机构:
Laboratoire de Mathématiques et Applications, UMR 7348, CNRS, Université de Poitiers, Chasseneuil-du-Poitou, 86360, FranceSchool of Mathematics & Statistics, University of New South Wales, Sydney,NSW,2052, Australia