One sided Hermite interpolation by piecewise different generalized polynomials

被引:5
|
作者
Muehlbach, G. [1 ]
机构
[1] Leibniz Univ Hannover, Inst Angew Math, D-30167 Hannover, Germany
关键词
ECT-systems; generalized polynomials; generalized piecewise polynomials; modified Hermite interpolation; one sided Hermite interpolation;
D O I
10.1016/j.cam.2005.06.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Piecewise generalized polynomials of different kinds of order n (ECT-splines of order n) are constructed from different ECT systems of order n via connection matrices which are nonsingular and totally positive. A well-known zero count for polynomial splines is extended to ECT splines. It is used to construct ECT B-splines and to show under which conditions ECT splines will solve modified Hermite-type interpolation problems. Also conditions are specified such that piecewise generalized polynomials form rECT-systems and the interpolation problems associated with may be solved recursively. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:285 / 298
页数:14
相关论文
共 50 条
  • [41] ON CONVERGENCE OF HERMITE-FEJER INTERPOLATION POLYNOMIALS
    KNOOP, HB
    ZHOU, XL
    JOURNAL OF APPROXIMATION THEORY, 1995, 81 (01) : 23 - 37
  • [42] Hermite Interpolation Polynomials on Parallelepipeds and FEM Applications
    Alexander A. Gusev
    Galmandakh Chuluunbaatar
    Ochbadrakh Chuluunbaatar
    Sergue I. Vinitsky
    Yuri A. Blinkov
    Algirdas Deveikis
    Peter O. Hess
    Luong Le Hai
    Mathematics in Computer Science, 2023, 17
  • [43] Hermite interpolation by piecewise polynomial surfaces with rational offsets
    Jüttler, B
    Sampoli, ML
    COMPUTER AIDED GEOMETRIC DESIGN, 2000, 17 (04) : 361 - 385
  • [44] Construct piecewise Hermite interpolation surface with blending methods
    Gao, XS
    Li, M
    GEOMETRIC MODELING AND PROCESSING: THEORY AND APPLICATIONS, PROCEEDINGS, 2002, : 53 - 59
  • [45] Cardinal Basis Piecewise Hermite Interpolation on Fuzzy Data
    Vosoughi, H.
    Abbasbandy, S.
    ADVANCES IN FUZZY SYSTEMS, 2016, 2016
  • [46] HERMITE-FEJER INTERPOLATION PROCESS WITH NODES IN ROOTS OF HERMITE POLYNOMIALS
    NEVAI, GP
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1972, 23 (1-2): : 247 - 253
  • [47] Orthonormal polynomials for generalized Freud-type weights and higher-order Hermite-Fejer interpolation polynomials
    Kasuga, T
    Sakai, R
    JOURNAL OF APPROXIMATION THEORY, 2004, 127 (01) : 1 - 38
  • [48] On a Mellin transform of the generalized Hermite polynomials
    Atakishiyeva, MK
    Atakishiyev, NM
    Vicent, LE
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2000, 6 (02): : 191 - 197
  • [49] On some properties of generalized hermite polynomials
    Djordjevic, G
    FIBONACCI QUARTERLY, 1996, 34 (01): : 2 - 6
  • [50] GENERATING FUNCTION OF GENERALIZED HERMITE POLYNOMIALS
    SAHA, BB
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1974, 27 (07): : 889 - 892