One sided Hermite interpolation by piecewise different generalized polynomials

被引:5
|
作者
Muehlbach, G. [1 ]
机构
[1] Leibniz Univ Hannover, Inst Angew Math, D-30167 Hannover, Germany
关键词
ECT-systems; generalized polynomials; generalized piecewise polynomials; modified Hermite interpolation; one sided Hermite interpolation;
D O I
10.1016/j.cam.2005.06.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Piecewise generalized polynomials of different kinds of order n (ECT-splines of order n) are constructed from different ECT systems of order n via connection matrices which are nonsingular and totally positive. A well-known zero count for polynomial splines is extended to ECT splines. It is used to construct ECT B-splines and to show under which conditions ECT splines will solve modified Hermite-type interpolation problems. Also conditions are specified such that piecewise generalized polynomials form rECT-systems and the interpolation problems associated with may be solved recursively. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:285 / 298
页数:14
相关论文
共 50 条
  • [31] Expansions for the fundamental Hermite interpolation polynomials in terms of Chebyshev polynomials
    Rizk M.M.
    Ukrainian Mathematical Journal, 2001, 53 (1) : 155 - 165
  • [32] INTERPOLATION POLYNOMIALS OF HERMITE-FEJER TYPE
    MILLS, TM
    COLLOQUIUM MATHEMATICUM, 1976, 35 (01) : 159 - 163
  • [33] Exploring Hermite interpolation polynomials using recursion
    Vajda, Robert
    ANNALES MATHEMATICAE ET INFORMATICAE, 2015, 45 : 151 - 160
  • [34] Interpolation Hermite Polynomials For Finite Element Method
    Gusev, Alexander
    Vinitsky, Sergue
    Chuluunbaatar, Ochbadrakh
    Chuluunbaatar, Galmandakh
    Gerdt, Vladimir
    Derbov, Vladimir
    Gozdz, Andrzej
    Krassovitskiy, Pavel
    MATHEMATICAL MODELING AND COMPUTATIONAL PHYSICS 2017 (MMCP 2017), 2018, 173
  • [35] On bivariate hermite interpolation with minimal degree polynomials
    Gasca, M
    Sauer, T
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (03) : 772 - 798
  • [36] Hermite Interpolation Polynomials on Parallelepipeds and FEM Applications
    Gusev, Alexander A.
    Chuluunbaatar, Galmandakh
    Chuluunbaatar, Ochbadrakh
    Vinitsky, Sergue I.
    Blinkov, Yuri A.
    Deveikis, Algirdas
    Hess, Peter O.
    Hai, Luong Le
    MATHEMATICS IN COMPUTER SCIENCE, 2023, 17 (3-4)
  • [37] ON THE ORDER OF MAGNITUDE OF FUNDAMENTAL POLYNOMIALS OF HERMITE INTERPOLATION
    SZABADOS, J
    ACTA MATHEMATICA HUNGARICA, 1993, 61 (3-4) : 357 - 368
  • [38] A KIND OF HERMITE-FEJER INTERPOLATION POLYNOMIALS
    XU, YA
    KEXUE TONGBAO, 1984, 29 (09): : 1272 - 1273
  • [39] Interpolation properties of Hermite-Pade polynomials
    Suetin, S. P.
    RUSSIAN MATHEMATICAL SURVEYS, 2021, 76 (03) : 543 - 545
  • [40] Multivariate Hermite interpolation by algebraic polynomials: A survey
    Lorentz, RA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 122 (1-2) : 167 - 201