One sided Hermite interpolation by piecewise different generalized polynomials

被引:5
|
作者
Muehlbach, G. [1 ]
机构
[1] Leibniz Univ Hannover, Inst Angew Math, D-30167 Hannover, Germany
关键词
ECT-systems; generalized polynomials; generalized piecewise polynomials; modified Hermite interpolation; one sided Hermite interpolation;
D O I
10.1016/j.cam.2005.06.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Piecewise generalized polynomials of different kinds of order n (ECT-splines of order n) are constructed from different ECT systems of order n via connection matrices which are nonsingular and totally positive. A well-known zero count for polynomial splines is extended to ECT splines. It is used to construct ECT B-splines and to show under which conditions ECT splines will solve modified Hermite-type interpolation problems. Also conditions are specified such that piecewise generalized polynomials form rECT-systems and the interpolation problems associated with may be solved recursively. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:285 / 298
页数:14
相关论文
共 50 条
  • [1] Piecewise trigonometric Hermite interpolation
    Han, Xuli
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 : 616 - 627
  • [2] On the Hermite-Fejer Interpolation Based at the Zeros of Generalized Freud Polynomials
    De Bonis, Maria Carmela
    Mastroianni, Giuseppe
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (01)
  • [3] Approximation of polynomials by Hermite interpolation
    Kantrowitz, Robert
    Neumann, Michael M.
    ELEMENTE DER MATHEMATIK, 2023, 78 (03) : 113 - 122
  • [4] Hermite interpolation with symmetric polynomials
    Phung Van Manh
    Numerical Algorithms, 2017, 76 : 709 - 725
  • [5] On the Hermite–Fejér Interpolation Based at the Zeros of Generalized Freud Polynomials
    Maria Carmela De Bonis
    Giuseppe Mastroianni
    Mediterranean Journal of Mathematics, 2018, 15
  • [6] HERMITE INTERPOLATION WITH TRIGONOMETRIC POLYNOMIALS
    DELVOS, FJ
    BIT, 1993, 33 (01): : 113 - 123
  • [7] Hermite interpolation with symmetric polynomials
    Phung Van Manh
    NUMERICAL ALGORITHMS, 2017, 76 (03) : 709 - 725
  • [8] Hermite and piecewise cubic Hermite interpolation of fuzzy data
    Zeinali, Masoumeh
    Shahmorad, Sedaghat
    Mirnia, Kamal
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 26 (06) : 2889 - 2898
  • [9] Hermite interpolation by piecewise rational surface
    Duan, Qi
    Li, Shilong
    Bao, Fangxun
    Twizell, E. H.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 198 (01) : 59 - 72
  • [10] On generalized Hermite polynomials
    Abd-Elhameed, Waleed Mohamed
    Alqubori, Omar Mazen
    AIMS MATHEMATICS, 2024, 9 (11): : 32463 - 32490