Automatic Classification of Text Documents Presenting Radiology Examinations

被引:0
|
作者
Klos, Monika [1 ]
Zylkowski, Jaroslaw [2 ]
Spinczyk, Dominik [1 ]
机构
[1] Silesian Tech Univ, Fac Biomed Engn, Roosevelta 40, PL-41800 Zabrze, Poland
[2] Med Univ Warsaw, Dept Clin Radiol 2, Banacha 1a, PL-02097 Warsaw, Poland
关键词
Medical records; Text mining; Text classifiers; Maximum entropy classifiers; Frequent phrase extraction classifiers;
D O I
10.1007/978-3-319-91211-0_43
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The paper presents the classification of text documents presenting radiology examinations, taking into consideration two groups: cases with aneurysms and those without it. A database containing descriptions of 1284 cases was classified using the maximum entropy algorithm and frequent phrase extraction. It was revealed that the best method was the classifier using the maximum entropy algorithm based on nouns. The best result obtained was 90% of sensitivity and 70% of specificity. The worse diagnostic capacity demonstrates frequent phrase extraction algorithm. The other classifiers turned out to be less effective, than the random ones.
引用
收藏
页码:495 / 505
页数:11
相关论文
共 50 条
  • [21] Automatic text classification of prostate cancer malignancy scores in radiology reports using NLP models
    Collado-Montanez, Jaime
    Lopez-Ubeda, Pilar
    Chizhikova, Mariia
    Diaz-Galiano, M. Carlos
    Urena-Lopez, L. Alfonso
    Martin-Noguerol, Teodoro
    Luna, Antonio
    Martin-Valdivia, M. Teresa
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2024, 62 (11) : 3373 - 3383
  • [22] Automatic image classification using labels from radiology text reports: predicting Deauville scores
    Bradshaw, Tyler
    Weisman, Amy
    Perlman, Scott
    Cho, Steve
    JOURNAL OF NUCLEAR MEDICINE, 2020, 61
  • [23] Automatic image classification using labels from radiology text reports: predicting Deauville scores
    Bradshaw, Tyler
    Weisman, Amy
    Perlman, Scott
    Cho, Steve
    JOURNAL OF NUCLEAR MEDICINE, 2020, 61
  • [24] Convolutional-neural-network-based Multilabel Text Classification for Automatic Discrimination of Legal Documents
    Qiu, Ming
    Zhang, Yiru
    Ma, Tianqi
    Wu, Qingfeng
    Jin, Fanzhu
    SENSORS AND MATERIALS, 2020, 32 (08) : 2659 - 2672
  • [25] AUTOMATIC CLASSIFICATION OF EFL LEARNERS' SELF-REPORTED TEXT DOCUMENTS ALONG AN AFFECTIVE CONTINUUM
    Uysal, Derya
    Uysal, Alper Kursat
    ADVANCED EDUCATION, 2022, (20) : 4 - 14
  • [26] Individualized Automatic Classification of Web Documents
    Tsai, Yihjia
    Chen, Kaun-Yu
    PROCEEDINGS OF 2010 CROSS-STRAIT CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY, 2010, : 410 - 412
  • [27] Chinese Automatic Documents Classification System
    Li, Li-Rui
    Yang, Kai
    PROCEEDINGS OF 2010 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY (ICCSIT 2010), VOL 5, 2010, : 324 - 327
  • [28] Automatic classification method for XML documents
    Haitao W.
    Zhenmin T.
    International Journal of Digital Content Technology and its Applications, 2011, 5 (12) : 153 - 161
  • [29] Automatic Text Summarization and Classification
    Simske, Steven J.
    Lins, Rafael
    PROCEEDINGS OF THE ACM SYMPOSIUM ON DOCUMENT ENGINEERING (DOCENG 2018), 2018,
  • [30] Automatic Classification of Text Complexity
    Santucci, Valentino
    Santarelli, Filippo
    Forti, Luciana
    Spina, Stefania
    APPLIED SCIENCES-BASEL, 2020, 10 (20): : 1 - 19