Automatic text classification of prostate cancer malignancy scores in radiology reports using NLP models

被引:2
|
作者
Collado-Montanez, Jaime [1 ]
Lopez-Ubeda, Pilar [2 ]
Chizhikova, Mariia [1 ]
Diaz-Galiano, M. Carlos [1 ]
Urena-Lopez, L. Alfonso [1 ]
Martin-Noguerol, Teodoro [3 ]
Luna, Antonio [3 ]
Martin-Valdivia, M. Teresa [1 ]
机构
[1] Univ Jaen, Adv Studies Ctr ICT CEAT, Dept Comp Sci, Campus Las Lagunillas, Jaen 23071, Spain
[2] HT Med, Nat Language Proc Unit, Carmelo Torres 2, Jaen 23007, Spain
[3] HT Med, Radiol Dept, MRI Unit, Carmelo Torres 2, Jaen 23007, Spain
关键词
PI-RADS classification; Natural language processing; Radiology report classification; RoBERTa-clinical; XGBoost;
D O I
10.1007/s11517-024-03131-x
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents the implementation of two automated text classification systems for prostate cancer findings based on the PI-RADS criteria. Specifically, a traditional machine learning model using XGBoost and a language model-based approach using RoBERTa were employed. The study focused on Spanish-language radiological MRI prostate reports, which has not been explored before. The results demonstrate that the RoBERTa model outperforms the XGBoost model, although both achieve promising results. Furthermore, the best-performing system was integrated into the radiological company's information systems as an API, operating in a real-world environment.
引用
收藏
页码:3373 / 3383
页数:11
相关论文
共 50 条
  • [1] Automatic image classification using labels from radiology text reports: predicting Deauville scores
    Bradshaw, Tyler
    Weisman, Amy
    Perlman, Scott
    Cho, Steve
    JOURNAL OF NUCLEAR MEDICINE, 2020, 61
  • [2] Automatic image classification using labels from radiology text reports: predicting Deauville scores
    Bradshaw, Tyler
    Weisman, Amy
    Perlman, Scott
    Cho, Steve
    JOURNAL OF NUCLEAR MEDICINE, 2020, 61
  • [3] Automatic Text Classification of PDF Documents using NLP Techniques
    Abdoun, Nabil
    Chami, Mohammad
    INCOSE International Symposium, 2022, 32 (01) : 1320 - 1331
  • [4] Classification of Radiology Reports Using Neural Attention Models
    Shin, Bonggun
    Chokshi, Falgun H.
    Lee, Timothy
    Choi, Jinho D.
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 4363 - 4370
  • [5] An Approach for Automatic Classification of Radiology Reports in Spanish
    Cotik, Viviana
    Filippo, Dario
    Castano, Jose
    MEDINFO 2015: EHEALTH-ENABLED HEALTH, 2015, 216 : 634 - 638
  • [6] Automatic structuring of radiology free-text reports
    Taira, RK
    Soderland, SG
    Jakobovits, RM
    RADIOGRAPHICS, 2001, 21 (01) : 237 - 245
  • [7] A Unified Understanding of Deep NLP Models for Text Classification
    Li, Zhen
    Wang, Xiting
    Yang, Weikai
    Wu, Jing
    Zhang, Zhengyan
    Liu, Zhiyuan
    Sun, Maosong
    Zhang, Hui
    Liu, Shixia
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (12) : 4980 - 4994
  • [8] Natural Language Processing of Radiology Text Reports: Interactive Text Classification
    Wiggins, Walter F.
    Kitamura, Felipe
    Santos, Igor
    Prevedello, Luciano M.
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (04)
  • [9] Automatic Classification of Text Documents Presenting Radiology Examinations
    Klos, Monika
    Zylkowski, Jaroslaw
    Spinczyk, Dominik
    INFORMATION TECHNOLOGY IN BIOMEDICINE (ITIB 2018), 2019, 762 : 495 - 505
  • [10] Neural classification of Norwegian radiology reports: using NLP to detect findings in CT-scans of children
    Dahl, Fredrik A.
    Rama, Taraka
    Hurlen, Petter
    Brekke, Pal H.
    Husby, Haldor
    Gundersen, Tore
    Nytro, Oystein
    Ovrelid, Lilja
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2021, 21 (01) : 84