Discrete homology theory for metric spaces

被引:18
|
作者
Barcelo, Helene [1 ]
Capraro, Valerio [2 ]
White, Jacob A. [3 ]
机构
[1] Math Sci Res Inst, Berkeley, CA 94720 USA
[2] Univ Southampton, Dept Math, Southampton SO17 1BJ, Hants, England
[3] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
HOMOTOPY-THEORY;
D O I
10.1112/blms/bdu043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define and study a notion of discrete homology theory for metric spaces. Instead of working with simplicial homology, our chain complexes are given by Lipschitz maps from an n-dimensional cube to a fixed metric space. We prove that the resulting homology theory satisfies a discrete analogue of the Eilenberg-Steenrod axioms, and prove a discrete analogue of the Mayer-Vietoris exact sequence. Moreover, this discrete homology theory is related to the discrete homotopy theory of a metric space through a discrete analogue of the Hurewicz theorem. We study the class of groups that can arise as discrete homology groups and, in this setting, we prove that the fundamental group of a smooth, connected, metrizable, compact manifold is isomorphic to the discrete fundamental group of a 'fine enough' rectangulation of the manifold. Finally, we show that this discrete homology theory can be coarsened, leading to a new non-trivial coarse invariant of a metric space.
引用
收藏
页码:889 / 905
页数:17
相关论文
共 50 条
  • [31] Rigidity of Riemannian embeddings of discrete metric spaces
    Eilat, Matan
    Klartag, Bo'az
    INVENTIONES MATHEMATICAE, 2021, 226 (01) : 349 - 391
  • [32] Attractors of Discrete Controlled Systems in Metric Spaces
    N. A. Bobylev
    S. V. Emel'yanov
    S. K. Korovin
    Computational Mathematics and Modeling, 2000, 11 (4) : 321 - 326
  • [33] REMARKS ON GENERALIZED METRIC DISCRETE CONVERGENCE SPACES
    GAHLER, S
    MATELKAMINSKA, D
    MATHEMATISCHE NACHRICHTEN, 1990, 146 : 259 - 269
  • [34] Rigidity of Riemannian embeddings of discrete metric spaces
    Matan Eilat
    Bo’az Klartag
    Inventiones mathematicae, 2021, 226 : 349 - 391
  • [35] On the Structure of Discrete Metric Spaces Isometric to Circles
    Dress, Andreas W. M.
    Maehara, Hiroshi
    Pang, Sabrina Xing Mei
    Zeng, Zhenbing
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, AAIM 2019, 2019, 11640 : 83 - 94
  • [36] On the additivity of strong homology for locally compact separable metric spaces
    Nathaniel Bannister
    Jeffrey Bergfalk
    Justin Tatch Moore
    Israel Journal of Mathematics, 2023, 255 : 349 - 381
  • [37] Magnitude homology of geodesic metric spaces with an upper curvature bound
    Asao, Yasuhiko
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2021, 21 (02): : 647 - 664
  • [38] The theory of linear metric spaces.
    Hausdorff, F
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1932, 167 : 294 - 311
  • [39] Nonlinear potential theory on metric spaces
    Kinnunen, J
    Martio, O
    ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (03) : 857 - 883
  • [40] On the Theory of Probabilistic Metric Spaces with Applications
    张石生
    Acta Mathematica Sinica,English Series, 1985, (04) : 366 - 377