Nonlinear potential theory on metric spaces

被引:89
|
作者
Kinnunen, J
Martio, O
机构
[1] Helsinki Univ Technol, Inst Math, FIN-02015 Helsinki, Finland
[2] Univ Helsinki, Dept Math, FIN-00014 Helsinki, Finland
关键词
D O I
10.1215/ijm/1258130989
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study nonlinear potential theory on a metric measure space equipped with a doubling measure and supporting a Poincare inequality. Minimizers, superminimizers and the obstacle problem for the p-Dirichlet integral play an important role in the theory. We prove lower semicontinuity of superminimizers and continuity of the solution to the obstacle problem with a continuous obstacle. We also show that the limit of an increasing sequence of superminimizers is a superminimizer provided it is bounded above. Moreover, we consider superharmonic functions and study their relations to superminimizers. Our proofs are based on the direct methods of the calculus of variations and on De Giorgi type estimates. In particular, we do not use the Euler-Lagrange equation and our arguments are based on the-variational integral only.
引用
收藏
页码:857 / 883
页数:27
相关论文
共 50 条
  • [1] A PDE approach to nonlinear potential theory in metric measure spaces
    Gigli, Nicola
    Mondino, Andrea
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (04): : 505 - 534
  • [2] NONLINEAR APPROXIMATION THEORY IN METRIC VECTOR-SPACES
    AREND, W
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1973, 53 (04): : T179 - T180
  • [3] Nonlinear martingale theory for processes with values in metric spaces of nonpositive curvature
    Sturm, KT
    ANNALS OF PROBABILITY, 2002, 30 (03): : 1195 - 1222
  • [4] Nonlinear balayage on metric spaces
    Bjorn, Anders
    Bjorn, Jana
    Makalainen, Tero
    Parviainen, Mikko
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) : 2153 - 2171
  • [5] Nonlinear potential theory and weighted Sobolev spaces - Preliminaries
    Turesson, BO
    NONLINEAR POTENTIAL THEORY AND WEIGHTED SOBOLEV SPACES, 2000, 1736 : 1 - 14
  • [6] Nonlinear potential theory for Sobolev spaces on Carnot groups
    S. K. Vodop’yanov
    N. A. Kudryavtseva
    Siberian Mathematical Journal, 2009, 50 : 803 - 819
  • [7] NONLINEAR POTENTIAL THEORY FOR SOBOLEV SPACES ON CARNOT GROUPS
    Vodop'yanov, S. K.
    Kudryavtseva, N. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2009, 50 (05) : 803 - 819
  • [8] APPROXIMATION IN SOBOLEV SPACES AND NONLINEAR POTENTIAL-THEORY
    HEDBERG, LI
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1986, 45 : 473 - 480
  • [9] Potential Theory on Trees, Graphs and Ahlfors-regular Metric Spaces
    Arcozzi, Nicola
    Rochberg, Richard
    Sawyer, Eric T.
    Wick, Brett D.
    POTENTIAL ANALYSIS, 2014, 41 (02) : 317 - 366
  • [10] Potential Theory on Trees, Graphs and Ahlfors-regular Metric Spaces
    Nicola Arcozzi
    Richard Rochberg
    Eric T. Sawyer
    Brett D. Wick
    Potential Analysis, 2014, 41 : 317 - 366