Nonlinear potential theory on metric spaces

被引:89
|
作者
Kinnunen, J
Martio, O
机构
[1] Helsinki Univ Technol, Inst Math, FIN-02015 Helsinki, Finland
[2] Univ Helsinki, Dept Math, FIN-00014 Helsinki, Finland
关键词
D O I
10.1215/ijm/1258130989
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study nonlinear potential theory on a metric measure space equipped with a doubling measure and supporting a Poincare inequality. Minimizers, superminimizers and the obstacle problem for the p-Dirichlet integral play an important role in the theory. We prove lower semicontinuity of superminimizers and continuity of the solution to the obstacle problem with a continuous obstacle. We also show that the limit of an increasing sequence of superminimizers is a superminimizer provided it is bounded above. Moreover, we consider superharmonic functions and study their relations to superminimizers. Our proofs are based on the direct methods of the calculus of variations and on De Giorgi type estimates. In particular, we do not use the Euler-Lagrange equation and our arguments are based on the-variational integral only.
引用
收藏
页码:857 / 883
页数:27
相关论文
共 50 条
  • [41] TO THE METRIC THEORY OF NONLINEAR DIOPHANTINE APPROXIMATIONS
    VILCHINSKY, VT
    DOKLADY AKADEMII NAUK BELARUSI, 1990, 34 (08): : 677 - 680
  • [42] Complexity Theory of (Functions on) Compact Metric Spaces
    Kawamura, Akitoshi
    Steinberg, Florian
    Ziegler, Martin
    PROCEEDINGS OF THE 31ST ANNUAL ACM-IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2016), 2016, : 837 - 846
  • [43] The almost sure theory of finite metric spaces
    Goldbring, Isaac
    Hart, Bradd
    Kruckman, Alex
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (06) : 1740 - 1748
  • [44] COMMENTS ON THE KKM THEORY ON HYPERCONVEX METRIC SPACES
    Park, Sehie
    TAMKANG JOURNAL OF MATHEMATICS, 2010, 41 (01): : 1 - 14
  • [45] TOPOLOGICAL DEGREE THEORY IN FUZZY METRIC SPACES
    Rashid, M. H. M.
    ARCHIVUM MATHEMATICUM, 2019, 55 (02): : 83 - 96
  • [46] BIFURCATION-THEORY FOR METRIC PARAMETER SPACES
    BARTSCH, T
    TOPOLOGICAL FIXED POINT THEORY AND APPLICATIONS, 1989, 1411 : 1 - 8
  • [47] ON THE THEORY OF PROBABILISTIC METRIC-SPACES WITH APPLICATIONS
    CHANG, SS
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 67 (01): : 85 - 94
  • [48] ON GEOMETRIC MEASURE THEORY ON RECTIFIABLE METRIC SPACES
    Karmanova, Maria
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 54 (5-6): : 461 - 472
  • [49] On fixed point theory in partial metric spaces
    Alghamdi, Maryam A.
    Shahzad, Naseer
    Valero, Oscar
    FIXED POINT THEORY AND APPLICATIONS, 2012,
  • [50] The sharp Riesz potential estimates in metric spaces
    Maly, J
    Pick, L
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2002, 51 (02) : 251 - 268