The vertex degrees of minimum spanning trees

被引:7
|
作者
Cieslik, D [1 ]
机构
[1] Univ Greifswald, Inst Math & Comp Sci, D-17487 Greifswald, Germany
关键词
graph theory; minimum spanning trees;
D O I
10.1016/S0377-2217(99)00458-0
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We study the problem of minimum spanning trees (MST) with degree constraints. It is well-known that this problem in general is, NP-hard. It will be shown that in finite-dimensional Banach spaces there is a number such that a bounded degree MST can be computed as efficiently as an ordinary MST if the degree constraint is greater than this number. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:278 / 282
页数:5
相关论文
共 50 条
  • [41] Distributed and Autonomic Minimum Spanning Trees
    Rodrigues, Luiz A.
    Duarte, Elias P., Jr.
    Arantes, Luciana
    2014 BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 2014, : 138 - 146
  • [42] Minimum restricted diameter spanning trees
    Hassin, R
    Levin, A
    DISCRETE APPLIED MATHEMATICS, 2004, 137 (03) : 343 - 357
  • [43] Hierarchical clustering in minimum spanning trees
    Yu, Meichen
    Hillebrand, Arjan
    Tewarie, Prejaas
    Meier, Jil
    van Dijk, Bob
    Van Mieghem, Piet
    Stam, Cornelis Jan
    CHAOS, 2015, 25 (02)
  • [44] Distributed Minimum Degree Spanning Trees
    Dinitz, Michael
    Halldorsson, Magnus M.
    Izumi, Taisuke
    Newport, Calvin
    PROCEEDINGS OF THE 2019 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING (PODC '19), 2019, : 511 - 520
  • [45] Counting minimum weight spanning trees
    Broder, AZ
    Mayr, EW
    JOURNAL OF ALGORITHMS, 1997, 24 (01) : 171 - 176
  • [46] On the Simultaneous Minimum Spanning Trees Problem
    Konecny, Matej
    Kucera, Stanislav
    Novotna, Jana
    Pekarek, Jakub
    Smolik, Martin
    Tetek, Jakub
    Topfer, Martin
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2018, 2018, 10743 : 235 - 248
  • [47] Computing minimum spanning trees with uncertainty
    Erlebach, Thomas
    Hoffmann, Michael
    Krizanc, Danny
    Mihal'ak, Matus
    Raman, Rajeev
    STACS 2008: PROCEEDINGS OF THE 25TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, 2008, : 277 - +
  • [48] NOTE ON BISECTING MINIMUM SPANNING TREES
    BOYCE, WM
    GAREY, MR
    JOHNSON, DS
    NETWORKS, 1978, 8 (03) : 187 - 192
  • [49] Minimum spanning trees and dissimilarity analysis
    Leclerc, B
    ORDINAL AND SYMBOLIC DATA ANALYSIS, 1996, : 215 - 224
  • [50] RECENT DEVELOPMENTS ON MINIMUM SPANNING TREES
    YAO, AC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (05): : A597 - A597