The vertex degrees of minimum spanning trees

被引:7
|
作者
Cieslik, D [1 ]
机构
[1] Univ Greifswald, Inst Math & Comp Sci, D-17487 Greifswald, Germany
关键词
graph theory; minimum spanning trees;
D O I
10.1016/S0377-2217(99)00458-0
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We study the problem of minimum spanning trees (MST) with degree constraints. It is well-known that this problem in general is, NP-hard. It will be shown that in finite-dimensional Banach spaces there is a number such that a bounded degree MST can be computed as efficiently as an ordinary MST if the degree constraint is greater than this number. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:278 / 282
页数:5
相关论文
共 50 条
  • [31] CUMULATIVE CONSTRUCTION OF MINIMUM SPANNING TREES
    ROGER, JH
    CARPENTE.RG
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1971, 20 (02) : 192 - &
  • [32] Minimum Spanning Trees with Sums of Ratios
    Christopher C. Skiscim
    Susan W. Palocsay
    Journal of Global Optimization, 2001, 19 : 103 - 120
  • [33] On minimum edge ranking spanning trees
    Makino, K
    Uno, Y
    Ibaraki, T
    JOURNAL OF ALGORITHMS, 2001, 38 (02) : 411 - 437
  • [34] Distributed verification of minimum spanning trees
    Amos Korman
    Shay Kutten
    Distributed Computing, 2007, 20 : 253 - 266
  • [35] On Sorting, Heaps, and Minimum Spanning Trees
    Gonzalo Navarro
    Rodrigo Paredes
    Algorithmica, 2010, 57 : 585 - 620
  • [36] Balanced partition of minimum spanning trees
    Andersson, M
    Gudmundsson, J
    Levcopoulos, C
    Narasimhan, G
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2003, 13 (04) : 303 - 316
  • [37] Minimum bounded degree spanning trees
    Goemans, Michel X.
    47TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2006, : 273 - 282
  • [38] Balanced partition of minimum spanning trees
    Andersson, M
    Gudmundsson, J
    Levcopoulos, C
    Narasimhan, G
    COMPUTATIONAL SCIENCE-ICCS 2002, PT III, PROCEEDINGS, 2002, 2331 : 26 - 35
  • [39] Minimum spanning trees with sums of ratios
    Skiscim, CC
    Palocsay, SW
    JOURNAL OF GLOBAL OPTIMIZATION, 2001, 19 (02) : 103 - 120
  • [40] Minimum spanning trees on random networks
    Dobrin, R
    Duxbury, PM
    PHYSICAL REVIEW LETTERS, 2001, 86 (22) : 5076 - 5079