Hyperspectral source prediction based on an optimal selection of multispectral data

被引:2
|
作者
Keef, James L. [1 ]
Thome, Kurtis J. [1 ]
机构
[1] Univ Arizona, Coll Opt Sci, Remote Sensing Grp, Tucson, AZ 85721 USA
来源
关键词
Hyperspectral imaging; numerical optimization; optical sources and standards; detectors and sensors; radiometry;
D O I
10.1117/1.3112773
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Two optimization techniques from the class of direct search solvers, the genetic and generalized pattern search algorithms, are applied to hyperspectral source prediction. The number of filter bands to be sampled and their placements are the variables subject to optimization. The algorithms provide the optimal placements by sampling the stable source radiances at multispectral resolution, estimating the original source spectrum upon interpolation to hyperspectral resolution, and retaining the most accurate prediction. The integrated absolute error between the source prediction and the hyperspectral source truth is minimized. The interpolation estimate of the source approaches zero error asymptotically, as the number of allowed band samples is increased. The source spectrum of 2.15 mu m bandwidth is reconstructed with 13 bands and relative absolute error of less than 0.5%. The method can be applied to any radiance spectrum or subspectrum partition, and is useful in transfer radiometer design or minimizing the number of spectrometer measurements required for hyperspectral source prediction.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Deep Unsupervised Blind Hyperspectral and Multispectral Data Fusion
    Li, Jiaxin
    Zheng, Ke
    Yao, Jing
    Gao, Lianru
    Hong, Danfeng
    IEEE Geoscience and Remote Sensing Letters, 2022, 19
  • [32] Deep Unsupervised Blind Hyperspectral and Multispectral Data Fusion
    Li, Jiaxin
    Zheng, Ke
    Yao, Jing
    Gao, Lianru
    Hong, Danfeng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [33] Harmonization of Hyperspectral and Multispectral Data for Calculation of Vegetation Index
    Nurmukhametov, A. L.
    Sidorchuk, D. S.
    Skidanov, R. V.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2024, 69 (1-3) : 38 - 45
  • [34] High-performance fusion of multispectral and hyperspectral data
    Winter, Michael E.
    Winter, Edwin M.
    Beaven, Scott G.
    Ratkowski, Anthony J.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XII PTS 1 AND 2, 2006, 6233
  • [35] Harmonization of Hyperspectral and Multispectral Data for Calculation of Vegetation Index
    Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow
    127051, Russia
    不详
    443086, Russia
    不详
    443001, Russia
    J. Commun. Technol. Electron.,
  • [36] SEGMENTATION OF MULTISPECTRAL DATA SIMULATED FROM HYPERSPECTRAL IMAGERY
    Marcinkiewicz, Michal
    Kawulok, Michal
    Nalepa, Jakub
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3336 - 3339
  • [37] Optimal Parameter Selection in Hyperspectral Classification Based on Convolutional Neural Network
    Sun, Qiaoqiao
    Liu, Xuefeng
    Bourennane, Salah
    2019 5TH INTERNATIONAL CONFERENCE ON FRONTIERS OF SIGNAL PROCESSING (ICFSP 2019), 2019, : 100 - 104
  • [38] Edge patch image-based morphological profiles for classification of multispectral and hyperspectral data
    Imani, Maryam
    Ghassemian, Hassan
    IET IMAGE PROCESSING, 2017, 11 (03) : 164 - 172
  • [39] Hyperspectral and multispectral data fusion based on linear-quadratic nonnegative matrix factorization
    Benhalouche, Fatima Zohra
    Karoui, Moussa Sofiane
    Deville, Yannick
    Ouamri, Abdelaziz
    JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
  • [40] Resolution enhancement of Hyperion hyperspectral data using Ikonos multispectral data
    Winter, Edwin M.
    Winter, Michael E.
    Beaven, Scott G.
    Ratkowski, Anthony J.
    REMOTE SENSING FOR ENVIRONMENTAL MONITORING, GIS APPLICATIONS, AND GEOLOGY VII, 2007, 6749