Hyperspectral source prediction based on an optimal selection of multispectral data

被引:2
|
作者
Keef, James L. [1 ]
Thome, Kurtis J. [1 ]
机构
[1] Univ Arizona, Coll Opt Sci, Remote Sensing Grp, Tucson, AZ 85721 USA
来源
JOURNAL OF APPLIED REMOTE SENSING | 2009年 / 3卷
关键词
Hyperspectral imaging; numerical optimization; optical sources and standards; detectors and sensors; radiometry;
D O I
10.1117/1.3112773
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Two optimization techniques from the class of direct search solvers, the genetic and generalized pattern search algorithms, are applied to hyperspectral source prediction. The number of filter bands to be sampled and their placements are the variables subject to optimization. The algorithms provide the optimal placements by sampling the stable source radiances at multispectral resolution, estimating the original source spectrum upon interpolation to hyperspectral resolution, and retaining the most accurate prediction. The integrated absolute error between the source prediction and the hyperspectral source truth is minimized. The interpolation estimate of the source approaches zero error asymptotically, as the number of allowed band samples is increased. The source spectrum of 2.15 mu m bandwidth is reconstructed with 13 bands and relative absolute error of less than 0.5%. The method can be applied to any radiance spectrum or subspectrum partition, and is useful in transfer radiometer design or minimizing the number of spectrometer measurements required for hyperspectral source prediction.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Hyperspectral image sharpening using multispectral data
    Winter, Michael E.
    Winter, Edwin M.
    Beaven, Scott G.
    Ratkowski, Anthony J.
    2007 IEEE AEROSPACE CONFERENCE, VOLS 1-9, 2007, : 2079 - 2087
  • [22] Hyperspectral image lossless compressionusing adaptive bands selection and optimal prediction sequence
    Zhu F.-Q.
    Wang H.-J.
    Yang L.-P.
    Li C.-G.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2020, 28 (07): : 1609 - 1617
  • [23] HYPERSPECTRAL AND MULTISPECTRAL DATA FUSION MISSION ON HYPERSPECTRAL IMAGER SUITE (HISUI)
    Yokoya, Naoto
    Iwasaki, Akira
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 4086 - 4089
  • [24] MULTISPECTRAL AND HYPERSPECTRAL DATA FUSION BASED ON SAM MINIMIZATION BAND ASSIGNMENT APPROACH
    Picone, D.
    Restaino, R.
    Vivone, G.
    Addesso, P.
    Dalla Mura, M.
    Chanussot, J.
    2016 8TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2016,
  • [25] Margin-based feature selection for hyperspectral data
    Pal, Mahesh
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2009, 11 (03): : 212 - 220
  • [26] MULTISPECTRAL DETECTION OF CITRUS CANKER USING HYPERSPECTRAL BAND SELECTION
    Qin, J.
    Burks, T. F.
    Zhao, X.
    Niphadkar, N.
    Ritenour, M. A.
    TRANSACTIONS OF THE ASABE, 2011, 54 (06) : 2331 - 2341
  • [27] Hyperspectral Band Selection for Multispectral Image Classification with Convolutional Networks
    Morales, Giorgio
    Sheppard, John
    Logan, Riley
    Shaw, Joseph
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [28] OPTIMAL WAVELENGTH SELECTION FOR HYPERSPECTRAL SCATTERING PREDICTION OF APPLE FIRMNESS AND SOLUBLE SOLIDS CONTENT
    Huang, M.
    Lu, R.
    TRANSACTIONS OF THE ASABE, 2010, 53 (04) : 1175 - 1182
  • [29] Supervised band selection for optimal use of data from airborne hyperspectral sensors
    Riedmann, M
    Milton, EJ
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 1770 - 1772
  • [30] Mucilage Detection from Hyperspectral and Multispectral Satellite Data
    Abaci, Bahri
    Dede, Murat
    Yuksel, Seniha Esen
    Yilmaz, Mete
    ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGING XXVIII, 2022, 12094