Galois descent for real spectra

被引:2
|
作者
Banerjee, Romie [1 ]
机构
[1] Indian Inst Sci Educ & Res, Dept Math, Bhopal, India
关键词
Real-oriented cohomology; Galois extensions of ring spectra; Effective descent for modules; Barr-Beck-Lurie comonadicity;
D O I
10.1007/s40062-016-0127-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove analogs of faithfully flat descent and Galois descent for categories of modules over E-infinity-ring spectra using the infinity-categorical Barr-Beck theorem proved by Lurie. In particular, faithful G-Galois extensions are shown to be of effective descent for modules. Using this we study the category of ER(n)-modules, where ER(n) is the Z/2-fixed points under complex conjugation of a generalized Johnson-Wilson spectrum E(n). In particular, we show that ER(n)-modules is equivalent to Z/2-equivariant E(n)-modules as stable infinity-categories.
引用
收藏
页码:273 / 297
页数:25
相关论文
共 50 条