Real-oriented cohomology;
Galois extensions of ring spectra;
Effective descent for modules;
Barr-Beck-Lurie comonadicity;
D O I:
10.1007/s40062-016-0127-1
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We prove analogs of faithfully flat descent and Galois descent for categories of modules over E-infinity-ring spectra using the infinity-categorical Barr-Beck theorem proved by Lurie. In particular, faithful G-Galois extensions are shown to be of effective descent for modules. Using this we study the category of ER(n)-modules, where ER(n) is the Z/2-fixed points under complex conjugation of a generalized Johnson-Wilson spectrum E(n). In particular, we show that ER(n)-modules is equivalent to Z/2-equivariant E(n)-modules as stable infinity-categories.
机构:
Univ Canterbury, Sch Math & Stat, Private Bag 4800, Christchurch 8140, New ZealandUniv Canterbury, Sch Math & Stat, Private Bag 4800, Christchurch 8140, New Zealand
Pajwani, Jesse
Voloch, Jose Felipe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Canterbury, Sch Math & Stat, Private Bag 4800, Christchurch 8140, New ZealandUniv Canterbury, Sch Math & Stat, Private Bag 4800, Christchurch 8140, New Zealand
机构:
Univ Claude Bernard Lyon 1, Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, FranceUniv Claude Bernard Lyon 1, Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France