Galois descent for real spectra

被引:2
|
作者
Banerjee, Romie [1 ]
机构
[1] Indian Inst Sci Educ & Res, Dept Math, Bhopal, India
关键词
Real-oriented cohomology; Galois extensions of ring spectra; Effective descent for modules; Barr-Beck-Lurie comonadicity;
D O I
10.1007/s40062-016-0127-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove analogs of faithfully flat descent and Galois descent for categories of modules over E-infinity-ring spectra using the infinity-categorical Barr-Beck theorem proved by Lurie. In particular, faithful G-Galois extensions are shown to be of effective descent for modules. Using this we study the category of ER(n)-modules, where ER(n) is the Z/2-fixed points under complex conjugation of a generalized Johnson-Wilson spectrum E(n). In particular, we show that ER(n)-modules is equivalent to Z/2-equivariant E(n)-modules as stable infinity-categories.
引用
收藏
页码:273 / 297
页数:25
相关论文
共 50 条
  • [1] Galois descent for real spectra
    Romie Banerjee
    Journal of Homotopy and Related Structures, 2017, 12 : 273 - 297
  • [2] The Galois descent...
    Illusie, Luc
    MOSCOW MATHEMATICAL JOURNAL, 2009, 9 (01) : 47 - 55
  • [3] Galois descent criteria
    Jardine, J. F.
    HOMOTOPY THEORY: TOOLS AND APPLICATIONS, 2019, 729 : 129 - 155
  • [4] On Galois descent of complete intersections
    Pieropan, Marta
    MATHEMATICAL RESEARCH LETTERS, 2021, 28 (04) : 1243 - 1254
  • [5] Galois descent on the Brauer group
    Colliot-Thelene, Jean-Louis
    Skorobogatov, Alexei N.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 682 : 141 - 165
  • [6] Galois descent of additive invariants
    Tabuada, Goncalo
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2014, 46 : 385 - 395
  • [7] Galois descent for the gonality of curves
    Roe, Joaquim
    Xarles, Xavier
    MATHEMATICAL RESEARCH LETTERS, 2018, 25 (05) : 1567 - 1589
  • [8] On the galois actions on torsors of paths - I, descent of Galois representations
    Wojtkowiak, Zdzislaw
    JOURNAL OF MATHEMATICAL SCIENCES-THE UNIVERSITY OF TOKYO, 2007, 14 (02): : 177 - 259
  • [9] Galois descent for higher Brauer groups
    Diaz, H. Anthony
    MANUSCRIPTA MATHEMATICA, 2020, 163 (3-4) : 537 - 551
  • [10] INSEPARABLE GALOIS DESCENT, PRELIMINARY REPORT
    CHASE, SU
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (03): : A397 - A398