On Newman's central limit theorem

被引:1
|
作者
Shashkin, A. P. [1 ]
机构
[1] MSU, Dept Probabil Theory, Moscow 119992, Russia
关键词
associated random variables; stationarity; central limit theorem; slowly varying functions;
D O I
10.1137/S0040585X97981731
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We construct an example of a strictly stationary associated random sequence which does not satisfy the central limit theorem and whose partial sums' variance grows in a defined regular way. This result generalizes the well-known example of N. Herrndorf and shows the optimality of conditions in the classical Newman's theorem.
引用
收藏
页码:330 / 337
页数:8
相关论文
共 50 条
  • [21] ON CENTRAL LIMIT THEOREM IN RK
    VONBAHR, B
    ARKIV FOR MATEMATIK, 1967, 7 (01): : 61 - &
  • [22] ON MULTIDIMENSIONAL CENTRAL LIMIT THEOREM
    SADIKOVA, SM
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1968, 13 (01): : 164 - &
  • [23] CENTRAL LIMIT-THEOREM
    LECAM, L
    ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (02): : 826 - +
  • [24] Central limit theorem and chaoticity
    Wu, Xinxing
    Chen, Guanrong
    STATISTICS & PROBABILITY LETTERS, 2014, 92 : 137 - 142
  • [26] The central limit theorem and chaos
    Ying-xuan Niu
    Applied Mathematics-A Journal of Chinese Universities, 2009, 24 : 230 - 236
  • [27] Central limit theorem for capacities
    Hu, Feng
    Zhang, Defei
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (19-20) : 1111 - 1114
  • [28] A Randomized Central Limit Theorem
    Eliazar, Iddo
    Klafter, Joseph
    CHEMICAL PHYSICS, 2010, 370 (1-3) : 290 - 293
  • [29] On the universal AS central limit theorem
    Hoermann, S.
    ACTA MATHEMATICA HUNGARICA, 2007, 116 (04) : 377 - 398
  • [30] The central limit theorem and ergodicity
    Niu, Yingxuan
    Wang, Yi
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (15-16) : 1180 - 1184