On Newman's central limit theorem

被引:1
|
作者
Shashkin, A. P. [1 ]
机构
[1] MSU, Dept Probabil Theory, Moscow 119992, Russia
关键词
associated random variables; stationarity; central limit theorem; slowly varying functions;
D O I
10.1137/S0040585X97981731
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We construct an example of a strictly stationary associated random sequence which does not satisfy the central limit theorem and whose partial sums' variance grows in a defined regular way. This result generalizes the well-known example of N. Herrndorf and shows the optimality of conditions in the classical Newman's theorem.
引用
收藏
页码:330 / 337
页数:8
相关论文
共 50 条
  • [1] On the universal A.S. central limit theorem
    S. Hörmann
    Acta Mathematica Hungarica, 2007, 116 : 377 - 398
  • [2] On Shige Peng's central limit theorem
    Krylov, N. V.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (03) : 1426 - 1434
  • [3] On the Central Limit Theorem
    Bergstroem, Harald
    SKANDINAVISK AKTUARIETIDSKRIFT, 1944, 27 (3-4): : 139 - 153
  • [4] Kac's central limit theorem by Stein's method
    Bhar, Suprio
    Mukherjee, Ritwik
    Patil, Prathmesh
    STATISTICS & PROBABILITY LETTERS, 2025, 219
  • [5] Zipf's law is not a consequence of the central limit theorem
    Troll, G.
    Graben, P. beim
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 57 (2-A):
  • [6] METRIC ENTROPY AND CENTRAL LIMIT THEOREM IN C(S)
    DUDLEY, RM
    ANNALES DE L INSTITUT FOURIER, 1974, 24 (02) : 49 - 60
  • [7] Lindeberg's central limit theorem a la Hausdorff
    Chatterji, S. D.
    EXPOSITIONES MATHEMATICAE, 2007, 25 (03) : 215 - 233
  • [8] A central limit theorem for Ramanujan's tau function
    Elliott, P. D. T. A.
    RAMANUJAN JOURNAL, 2012, 29 (1-3): : 145 - 161
  • [9] STEIN'S METHOD FOR CONDITIONAL CENTRAL LIMIT THEOREM
    Dey, Partha s.
    Terlov, G. R. I. G. O. R. Y.
    ANNALS OF PROBABILITY, 2023, 51 (02): : 723 - 773
  • [10] Zipf's law is not a consequence of the central limit theorem
    Troll, G
    Graben, PB
    PHYSICAL REVIEW E, 1998, 57 (02): : 1347 - 1355