Predicting Hyperoxia-Induced Lung Injury from Associated Intestinal and Lung Dysbiosis in Neonatal Mice

被引:10
|
作者
Chen, Chung-Ming [1 ,2 ]
Chou, Hsiu-Chu [3 ]
Yang, Yu-Chen S. H. [4 ]
Su, Emily Chia-Yu [5 ,6 ]
Liu, Yun-Ru [4 ]
机构
[1] Taipei Med Univ Hosp, Dept Pediat, 252 Wu Hsing St, Taipei 11030, Taiwan
[2] Taipei Med Univ, Coll Med, Sch Med, Dept Pediat, Taipei, Taiwan
[3] Taipei Med Univ, Coll Med, Sch Med, Dept Anat & Cell Biol, Taipei, Taiwan
[4] Taipei Med Univ, Off Human Res, Joint Biobank, Taipei, Taiwan
[5] Taipei Med Univ, Coll Med Sci & Technol, Grad Inst Biomed Informat, Taipei, Taiwan
[6] Taipei Med Univ Hosp, Clin Big Data Res Ctr, Taipei, Taiwan
关键词
Hyperoxia; Microbiota; Mean linear intercept; Radial alveolar count; Vascular endothelial growth factor; von Willebrand factor; Occludin; Zonula occludens;
D O I
10.1159/000513553
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
Background: Preclinical studies have demonstrated that hyperoxia disrupts the intestinal barrier, changes the intestinal bacterial composition, and injures the lungs of newborn animals. Objectives: The aim of the study was to investigate the effects of hyperoxia on the lung and intestinal microbiota and the communication between intestinal and lung microbiota and to develop a predictive model for the identification of hyperoxia-induced lung injury from intestinal and lung microbiota based on machine learning algorithms in neonatal mice. Methods: Neonatal C57BL/6N mice were reared in either room air or hyperoxia (85% O-2) from postnatal days 1-7. On postnatal day 7, lung and intestinal microbiota were sampled from the left lung and lower gastrointestinal tract for 16S ribosomal RNA gene sequencing. Tissue from the right lung and terminal ileum were harvested for Western blot and histology analysis. Results: Hyperoxia induced intestinal injury, decreased intestinal tight junction expression, and impaired lung alveolarization and angiogenesis in neonatal mice. Hyperoxia also altered intestinal and lung microbiota and promoted bacterial translocation from the intestine to the lung as evidenced by the presence of intestinal bacteria in the lungs of hyperoxia-exposed neonatal mice. The relative abundance of these bacterial taxa was significantly positively correlated with the increased lung cytokines. Conclusions: Neonatal hyperoxia induced intestinal and lung dysbiosis and promoted bacterial translocation from the intestine to the lung. Further studies are needed to clarify the pathophysiology of bacterial translocation to the lung.
引用
收藏
页码:163 / 173
页数:11
相关论文
共 50 条
  • [21] Treatment of Hyperoxia-Induced Lung Injury with Lung Mesenchymal Stem Cells in Mice
    Mei, Yabo
    Chen, Chong
    Dong, Hui
    Zhang, Wanqiao
    Wang, Yan
    Chi, Ming
    Feng, Zhichun
    STEM CELLS INTERNATIONAL, 2018, 2018
  • [22] The Role Of Clusterin In Hyperoxia-Induced Lung Injury Mice Model
    Hong, J.
    Lee, K.
    Kim, M.
    Heo, W.
    Kim, K.
    Kim, K. -E.
    Sohn, M.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2013, 187
  • [23] Glutamine attenuates hyperoxia-induced acute lung injury in mice
    Perng, Wann-Cherng
    Huang, Kun-Lun
    Li, Min-Hui
    Hsu, Ching-Wang
    Tsai, Shih-Hung
    Chu, Shi-Jye
    Chang, Deh-Ming
    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2010, 37 (01): : 56 - 61
  • [24] Loss of interleukin-6 enhances the inflammatory response associated with hyperoxia-induced lung injury in neonatal mice
    Li, Hengtao
    Wang, Genzai
    Lin, Shuzhu
    Wang, Chunyan
    Zha, Jianzhong
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2019, 17 (04) : 3101 - 3107
  • [25] Does Hypercapnia Ameliorate Hyperoxia-Induced Lung Injury in Neonatal Rats?
    Matthew J. MacCarrick
    Dan Torbati
    Dai Kimura
    Andre Raszynski
    Wenjing Zeng
    Balagangadhar R. Totapally
    Lung, 2010, 188 : 235 - 240
  • [26] Does Hypercapnia Ameliorate Hyperoxia-Induced Lung Injury in Neonatal Rats?
    MacCarrick, Matthew J.
    Torbati, Dan
    Kimura, Dai
    Raszynski, Andre
    Zeng, Wenjing
    Totapally, Balagangadhar R.
    LUNG, 2010, 188 (03) : 235 - 240
  • [27] Leptin resistance protects mice from hyperoxia-induced acute lung injury
    Bellmeyer, Amy
    Martino, Janice M.
    Chandel, Navdeep S.
    Budinger, G. R. Scott
    Dean, David A.
    Mutlu, Gokhan M.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2007, 175 (06) : 587 - 594
  • [28] Neonatal Monocyte/macrophage Depletion Accelerates Hyperoxia-Induced Lung Injury
    Eldredge, L. C.
    Treuting, P. M.
    Manicone, A. M.
    Duffield, J. S.
    Parks, W. C.
    McGuire, J. K.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2014, 189
  • [29] Targeting Pyroptosis to Prevent Hyperoxia-induced Lung Injury in Neonatal Rats
    Mendha, Anam Amin
    Duncan, Matthew
    Zambrano, Ronald
    Benny, Merline
    Scmidt, Augusto
    Young, Karen C.
    Wu, Shu
    PEDIATRICS, 2021, 147 (03)
  • [30] Caspase-1 Inhibition Attenuates Hyperoxia-induced Lung and Brain Injury in Neonatal Mice
    Dapaah-Siakwan, Fredrick
    Zambrano, Ronald
    Luo, Shihua
    Duncan, Matthew R.
    Kerr, Nadine
    Donda, Keyur
    Vaccari, Juan Pablo de Rivero
    Keane, Robert W.
    Dietrich, W. Dalton
    Benny, Merline
    Young, Karen
    Wu, Shu
    AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2019, 61 (03) : 341 - 354