Local computational methods to improve the interpretability and analysis of cryo-EM maps

被引:37
|
作者
Kaur, Satinder [1 ]
Gomez-Blanco, Josue [1 ]
Khalifa, Ahmad A. Z. [1 ]
Adinarayanan, Swathi [1 ]
Sanchez-Garcia, Ruben [2 ]
Wrapp, Daniel [3 ]
McLellan, Jason S. [3 ]
Bui, Khanh Huy [1 ]
Vargas, Javier [4 ]
机构
[1] McGill Univ, Dept Anat & Cell Biol, 3640 Rue Univ, Montreal, PQ, Canada
[2] CSIC, Biocomp Unit, C Darwin 3, Madrid, Spain
[3] Univ Texas Austin, Dept Mol Biosci, Austin, TX 78712 USA
[4] Univ Complutense Madrid, Dept Opt, Madrid, Spain
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1038/s41467-021-21509-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cryo-electron microscopy (cryo-EM) maps usually show heterogeneous distributions of B-factors and electron density occupancies and are typically B-factor sharpened to improve their contrast and interpretability at high-resolutions. However, 'over-sharpening' due to the application of a single global B-factor can distort processed maps causing connected densities to appear broken and disconnected. This issue limits the interpretability of cryo-EM maps, i.e. ab initio modelling. In this work, we propose 1) approaches to enhance high-resolution features of cryo-EM maps, while preventing map distortions and 2) methods to obtain local B-factors and electron density occupancy maps. These algorithms have as common link the use of the spiral phase transformation and are called LocSpiral, LocBSharpen, LocBFactor and LocOccupancy. Our results, which include improved maps of recent SARS-CoV-2 structures, show that our methods can improve the interpretability and analysis of obtained reconstructions. Here, the authors present two local methods for analyzing cryo-EM maps: LocSpiral and LocBSharpen that enhance high-resolution features of cryoEM maps, while preventing map distortions. They also introduce LocBFactor and LocOccupancy, which allow obtaining local B-factors and electron density occupancy maps from cryo-EM reconstructions and the authors demonstrate that these methods improve the interpretability and analysis of cryo-EM maps using different test cases among them recent SARS-CoV-2 spike glycoprotein structures.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Local computational methods to improve the interpretability and analysis of cryo-EM maps
    Satinder Kaur
    Josue Gomez-Blanco
    Ahmad A. Z. Khalifa
    Swathi Adinarayanan
    Ruben Sanchez-Garcia
    Daniel Wrapp
    Jason S. McLellan
    Khanh Huy Bui
    Javier Vargas
    Nature Communications, 12
  • [3] Quantifying the local resolution of cryo-EM density maps
    Kucukelbir A.
    Sigworth F.J.
    Tagare H.D.
    Nature Methods, 2014, 11 (1) : 63 - 65
  • [4] Measuring local-directional resolution and local anisotropy in cryo-EM maps
    Jose Luis Vilas
    Hemant D. Tagare
    Javier Vargas
    Jose Maria Carazo
    Carlos Oscar S. Sorzano
    Nature Communications, 11
  • [5] Measuring local-directional resolution and local anisotropy in cryo-EM maps
    Vilas, Jose Luis
    Tagare, Hemant D.
    Vargas, Javier
    Maria Carazo, Jose
    Sorzano, Carlos Oscar S.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [6] Density modification of cryo-EM maps
    Terwilliger, Thomas C.
    Sobolev, Oleg V.
    Afonine, Pavel V.
    Adams, Paul D.
    Read, Randy J.
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2020, 76 : 912 - 925
  • [7] Modelling structures in cryo-EM maps
    Malhotra, Sony
    Trager, Sylvain
    Dal Peraro, Matteo
    Topf, Maya
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2019, 58 : 105 - 114
  • [8] Local heterogeneity analysis of crystallographic and cryo-EM maps using shell-approximation
    Lunin, Vladimir Y.
    Lunina, Natalia L.
    Urzhumtsev, Alexandre G.
    CURRENT RESEARCH IN STRUCTURAL BIOLOGY, 2023, 6
  • [9] Model-based local density sharpening of cryo-EM maps
    Jakobi, Arjen J.
    Wilmanns, Matthias
    Sachse, Carsten
    ELIFE, 2017, 6
  • [10] Automatic local resolution-based sharpening of cryo-EM maps
    Ramirez-Aportela, Erney
    Luis Vilas, Jose
    Glukhova, Alisa
    Melero, Roberto
    Conesa, Pablo
    Martinez, Marta
    Maluenda, David
    Mota, Javier
    Jimenez, Amaya
    Vargas, Javier
    Marabini, Roberto
    Sexton, Patrick M.
    Maria Carazo, Jose
    Sorzano, Carlos Oscar S.
    BIOINFORMATICS, 2020, 36 (03) : 765 - 772