Local computational methods to improve the interpretability and analysis of cryo-EM maps

被引:37
|
作者
Kaur, Satinder [1 ]
Gomez-Blanco, Josue [1 ]
Khalifa, Ahmad A. Z. [1 ]
Adinarayanan, Swathi [1 ]
Sanchez-Garcia, Ruben [2 ]
Wrapp, Daniel [3 ]
McLellan, Jason S. [3 ]
Bui, Khanh Huy [1 ]
Vargas, Javier [4 ]
机构
[1] McGill Univ, Dept Anat & Cell Biol, 3640 Rue Univ, Montreal, PQ, Canada
[2] CSIC, Biocomp Unit, C Darwin 3, Madrid, Spain
[3] Univ Texas Austin, Dept Mol Biosci, Austin, TX 78712 USA
[4] Univ Complutense Madrid, Dept Opt, Madrid, Spain
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1038/s41467-021-21509-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cryo-electron microscopy (cryo-EM) maps usually show heterogeneous distributions of B-factors and electron density occupancies and are typically B-factor sharpened to improve their contrast and interpretability at high-resolutions. However, 'over-sharpening' due to the application of a single global B-factor can distort processed maps causing connected densities to appear broken and disconnected. This issue limits the interpretability of cryo-EM maps, i.e. ab initio modelling. In this work, we propose 1) approaches to enhance high-resolution features of cryo-EM maps, while preventing map distortions and 2) methods to obtain local B-factors and electron density occupancy maps. These algorithms have as common link the use of the spiral phase transformation and are called LocSpiral, LocBSharpen, LocBFactor and LocOccupancy. Our results, which include improved maps of recent SARS-CoV-2 structures, show that our methods can improve the interpretability and analysis of obtained reconstructions. Here, the authors present two local methods for analyzing cryo-EM maps: LocSpiral and LocBSharpen that enhance high-resolution features of cryoEM maps, while preventing map distortions. They also introduce LocBFactor and LocOccupancy, which allow obtaining local B-factors and electron density occupancy maps from cryo-EM reconstructions and the authors demonstrate that these methods improve the interpretability and analysis of cryo-EM maps using different test cases among them recent SARS-CoV-2 spike glycoprotein structures.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] GemSpot: A Pipeline for Robust Modeling of Ligands into Cryo-EM Maps
    Robertson, Michael J.
    van Zundert, Gydo C. P.
    Borrelli, Kenneth
    Skiniotis, Georgios
    STRUCTURE, 2020, 28 (06) : 707 - +
  • [42] Likelihood-based docking of models into cryo-EM maps
    Millan, Claudia
    McCoy, Airlie J.
    Terwilliger, Thomas C.
    Read, Randy J.
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2023, 79 : 281 - 289
  • [43] A robust normalized local filter to estimate compositional heterogeneity directly from cryo-EM maps
    Forsberg, Bjoern O.
    Shah, Pranav N. M.
    Burt, Alister
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [44] Residue-wise local quality estimation for protein models from cryo-EM maps
    Terashi, Genki
    Wang, Xiao
    Subramaniya, Sai Raghavendra Maddhuri Venkata
    Tesmer, John J. G.
    Kihara, Daisuke
    NATURE METHODS, 2022, 19 (09) : 1116 - +
  • [45] A robust normalized local filter to estimate compositional heterogeneity directly from cryo-EM maps
    Björn O. Forsberg
    Pranav N. M. Shah
    Alister Burt
    Nature Communications, 14 (1)
  • [46] Automated model building and protein identification in cryo-EM maps
    Jamali, Kiarash
    Kaell, Lukas
    Zhang, Rui
    Brown, Alan
    Kimanius, Dari
    Scheres, Sjors H. W.
    NATURE, 2024, 628 (8007) : 450 - 457
  • [47] Model-building using cryo-EM and crystallographic maps
    Terwilliger, Thomas
    Adams, Paul
    Hung, Li-Wei
    Sobolev, Oleg
    Afonine, Pavel
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2017, 73 : C1327 - C1327
  • [48] De novo detection of symmetry in cryo-EM density maps
    Tykac, M.
    Cerny, J.
    Murshudov, G. N.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2021, 77 : C692 - C692
  • [49] Cryo-EM density maps adjustment for subtraction, consensus and sharpening
    Gimenez, E. Fernandez
    Martinez, M.
    Sanchez-Garcia, R.
    Marabini, R.
    Ramirez-Aportela, E.
    Conesa, P.
    Carazo, J. M.
    Sorzano, C. O. S.
    JOURNAL OF STRUCTURAL BIOLOGY, 2021, 213 (04)
  • [50] Automated model building and protein identification in cryo-EM maps
    Kiarash Jamali
    Lukas Käll
    Rui Zhang
    Alan Brown
    Dari Kimanius
    Sjors H. W. Scheres
    Nature, 2024, 628 : 450 - 457