Construction of a complete set of orthogonal Fourier-Mellin moment invariants for pattern recognition applications

被引:40
|
作者
Zhang, H. [1 ]
Shu, H. Z. [1 ]
Haigron, P. [2 ,3 ]
Li, B. S. [4 ]
Luo, L. M. [1 ]
机构
[1] Southeast Univ, Lab Image Sci & Technol, Sch Engn & Comp Sci, Nanjing 210096, Peoples R China
[2] INSERM, U642, F-35042 Rennes, France
[3] Univ Rennes 1, Lab Traitement Signal & Image, F-35042 Rennes, France
[4] Shandong Canc Hosp, Dept Radiat Oncol, Jinan 250117, Peoples R China
基金
中国国家自然科学基金;
关键词
Orthogonal Fourier-Mellin moments; Completeness; Similarity invariants; Moment invariants; Pattern recognition; SCALE INVARIANTS; CHARACTER-RECOGNITION; IMAGE-RECONSTRUCTION; ZERNIKE; TRANSLATION;
D O I
10.1016/j.imavis.2009.04.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The completeness property of a set of invariant descriptors is of fundamental importance from the theoretical as well as the practical points of view. In this paper, we propose a general approach to construct a complete set of orthogonal Fourier-Mellin moment (OFMM) invariants. By establishing a relationship between the OFMMs of the original image and those of the image having the same shape but distinct orientation and scale, a complete set of scale and rotation invariants is derived. The efficiency and the robustness to noise of the method for recognition tasks are shown by comparing it with some existing methods on several data sets. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:38 / 44
页数:7
相关论文
共 50 条
  • [1] Fractional Orthogonal Fourier-Mellin Moments for Pattern Recognition
    Zhang, Huaqing
    Li, Zongmin
    Liu, Yujie
    PATTERN RECOGNITION (CCPR 2016), PT I, 2016, 662 : 766 - 778
  • [2] ORTHOGONAL FOURIER-MELLIN MOMENTS FOR INVARIANT PATTERN-RECOGNITION
    SHENG, YL
    SHEN, LX
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (06): : 1748 - 1757
  • [3] Clifford Fourier-Mellin moments and their invariants for color image recognition
    Bouyachcher, Fadoua
    Bouali, Bouchta
    Nasri, M'barek
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2015, 118 : 123 - 129
  • [4] Invariant character recognition with Zernike and orthogonal Fourier-Mellin moments
    Kan, C
    Srinath, MD
    PATTERN RECOGNITION, 2002, 35 (01) : 143 - 154
  • [5] FOURIER-MELLIN SPATIAL FILTERS FOR INVARIANT PATTERN-RECOGNITION
    SHENG, Y
    OPTICAL ENGINEERING, 1989, 28 (05) : 494 - 500
  • [6] Accurate Computation of Orthogonal Fourier-Mellin Moments
    Chandan Singh
    Rahul Upneja
    Journal of Mathematical Imaging and Vision, 2012, 44 : 411 - 431
  • [7] Accurate Computation of Orthogonal Fourier-Mellin Moments
    Singh, Chandan
    Upneja, Rahul
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2012, 44 (03) : 411 - 431
  • [8] New Set of Gegenbauer Moment Invariants for Pattern Recognition Applications
    Hosny, Khalid M.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2014, 39 (10) : 7097 - 7107
  • [9] New Set of Gegenbauer Moment Invariants for Pattern Recognition Applications
    Khalid M. Hosny
    Arabian Journal for Science and Engineering, 2014, 39 : 7097 - 7107
  • [10] Method of synthesized phase objects for Fourier-Mellin invariant pattern recognition
    Ostroukh, Alexander P.
    Yezhov, Pavel V.
    Kim, Jin-Tae
    Kuzmenko, Alexander V.
    2016 IEEE 7TH INTERNATIONAL CONFERENCE ON ADVANCED OPTOELECTRONICS AND LASERS (CAOL), 2016, : 262 - 264